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It is well known that in cancer gene families some members are
more frequently mutated in tumor samples than their family
counterparts. A paradigmatic case of this phenomenon is KRAS
from the RAS family. Different explanations have been proposed
ranging from differential interaction with other proteins to prefer-
ential expression or localization. Interestingly, it has been described
that despite the high amino acid identity between RAS family
members, KRAS employs an intriguing differential codon usage.
Here, we found that this phenomenon is not exclusive to the RAS
family. Indeed, in the RAS family and other oncogene families
with two or three members, the most prevalently mutated gene
in tumor samples employs a differential codon usage that is
characteristic of genes involved in proliferation. Prompted by
these observations, we chose the RAS family to experimentally
demonstrate that the translation efficiency of oncogenes that are
preferentially mutated in tumor samples is increased in prolifer-
ative cells compared to quiescent cells. These results were further
validated by assessing the translation efficiency of KRAS in cell
lines that differ in their tRNA expression profile. These differ-
ences are related to the cell division rate of the studied cells and
thus suggest an important role in context-specific oncogene ex-
pression regulation. Altogether, our study demonstrates that dy-
namic translation programs contribute to shaping the expression
profiles of oncogenes. Therefore, we propose this codon bias as a
regulatory layer to control cell context-specific expression and
explain the differential prevalence of mutations in certain mem-
bers of oncogene families.
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Cancers arise due to mutations that confer a selective growth
advantage on cells (1). These mutations can occur in onco-

genes, which when activated by mutations contribute to the
cancer proliferation phenotype. Interestingly, oncogenes often
have closely related family members that are less frequently
mutated in cancer. The RAS family is a striking example. Acti-
vating mutations in KRAS are among the most common muta-
tions in human cancers (2). KRAS belongs to a family of three
genes, with the other two members being HRAS and NRAS. The
proteins encoded by these genes share a high sequence identity
of 85% and therefore have similar structures and biochemical
properties (3). However, the reasons behind the drastic variation
in mutation incidence between the RAS genes remain enigmatic.
Several studies indicate that each RAS protein leads to dif-

ferent cellular responses and oncogenic phenotypes (4–9). These
observations suggest that specificities at the level of function and
expression might contribute to the RAS mutation patterns ob-
served in human cancers (10). Part of the functional variation,
for example, is mediated by the distinct amino acid sequences at
the C-terminal hypervariable region that lead to distinct pro-
cessing (11) and cellular localization (12). Also, the RAS pro-
teins differ in their ability to activate downstream signaling
pathways (13–15). Besides the biochemical differences between
the RAS proteins, previous studies also suggest that the ex-
pression levels of HRAS, KRAS, and NRAS seem to play an

important role in their biological response (8, 16). Compelling
work in mouse embryogenesis showed that knockouts of KRAS,
which are embryonic lethal (17), can be rescued by knocking in
HRAS at the KRAS locus. This shows that the HRAS protein is
capable of replacing the essential function of KRAS in mouse
development (18). However, adult HRAS knockin mice showed
a pathological cardiovascular phenotype (18), a direct conse-
quence of the overexpression of the HRAS protein. Indeed,
elimination of the wild-type (WT) copies of HRAS completely
prevented these cardiovascular defects (9). With regards to RAS
expression, differences have also been identified at the level of
translation. Intriguingly, even though the RAS proteins are highly
similar, they employ a different codon usage with only 15% codon
identity (19). For instance, in comparison to the nucleotide
sequence of HRAS, KRAS is enriched in rare codons, which
are decoded by low-abundant tRNAs. This difference has been
linked to poor translation efficiency for KRAS and high
translation efficiency for HRAS (19).
Codon usage and tRNA abundance are important parameters

for fine tuning protein synthesis. The functional influence of
codon optimality and tRNA levels on the efficiency of protein
production remains a topic of intense debate (20, 21). In recent
years, studies have shown that tRNA levels are not static but
dynamically regulated in different cellular contexts, leading to
changes in the translation efficiency of transcripts depending on
their codon composition (22–26). In mammalian cells, changes in
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tRNA abundance have been reported across different cell states,
and specifically between healthy and cancer cells (22, 23). In-
terestingly, Gingold et al. (22) showed that a specific subset of
tRNAs is up-regulated in proliferating cells, but down-regulated
in differentiated or arrested cells. Additionally, the codon usage
of genes that are necessary for cell division was found to be
adapted to the tRNA repertoire of proliferative cells. Thus,
changes in the expression of specific tRNAs could regulate an
entire functional class of genes—for instance proliferative

genes—to favor cell growth. Would a cancer cell take advantage
of this translational program to modulate the expression of genes
to its own growth advantage? Could a dynamic regulation of
RAS translation efficiency determine the uneven mutation fre-
quencies across RAS genes? Would this be a general phenom-
enon across other cancer gene families?
To answer the above questions, we first identified eight pro-

tein families of three members each (RAS, RAF, RAC, RHO,
FOXA, FGFR, COL, and AKT) with high protein sequence

Fig. 1. Association between codon usage and mutation frequency in genes from eight different families. (A) Gene triplets with divergent mutation fre-
quencies in cancer, mutation counts normalized within each family are represented. (B) PCA projection of the human codon usage. The location of each gene
is determined by its codon usage. Distribution of GO gene sets along the main codon usage axis reveals the two functional poles: “proliferation” (negative
PC1) and “differentiation” (positive PC1). The positions of each gene within the RAS, RAC, RAF, RHO, FGFR, AKT, COL, and FOXA families and their normalized
mutation count are shown. (C) Distribution of the covariance of mutation count normalized within family and PC1 (lines are kernel density estimates as a
guide for the eye). The covariance of cancer gene families is significantly more negative than that of background families (W.M.W. test, *P < 0.008). All
families but one (FOXA) have a negative covariance.
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similarity and at least one protein relevant to cancer. In seven of
the eight families, we found that in contrast to its two homolo-
gous family members, the most frequently mutated gene had a
codon usage signature characteristic of proliferation-related
genes. The strongest association between mutation frequency
and proliferation-related codon usage was observed for the RAS,
RAF, and RAC families. Additionally, we found that this pattern
holds true for gene pairs and even helps to identify candidate
cancer gene families. Subsequently, we examined the RAS family
in further detail. We measured how proliferation and quiescent
cell states induce codon-dependent changes in KRAS protein
levels. Finally, we found that different tRNA expression profiles
between cell lines corresponded to differences in KRAS protein
levels. This work suggests the existence of different translational
programs such as the up-regulation of proliferative tRNAs that
have the potential to boost the protein synthesis of oncogenes.
Thus, our results suggest that dynamic changes in this funda-
mental cellular process may contribute to cancer and specifically
to the prevalence of mutations in certain genes when compared
to their closely related family members.

Results
Codon Usage of Cancer Genes. To explore whether the differences
in mutation frequency observed for RAS genes also occur in
other gene families, we performed a genome-wide survey of a
pan-cancer dataset from The Cancer Genome Atlas (TCGA). To
define the families, we clustered sets of proteins based on protein
sequence similarity. We restricted the analysis to families con-
taining at least one known cancer driver gene (2). We identified
eight families, including the RAS family, that have a high degree
of amino acid sequence similarity within the family (SI Appendix
and Materials and Methods). We consistently observed one gene
to be more frequently mutated (nonsynonymous mutation
counts) than the other genes of the same family (Fig. 1A and SI
Appendix, Table S1). This was especially true for the RAS, RAF,
and RAC families, which showed at least a twofold variation in
the mutation count number (i.e., fold change between the family
members with the lowest and highest mutation count). For the
RHO, FOXA, FGFR, and COL families, we observed a fold
change between 1.30 and 1.95, and for the AKT family, this ef-
fect was milder, with a fold change of just 1.22.
As previously described, RAS genes have a high amino acid

sequence identity (85%) but differ in their codon usage (15%
codon identity) (19). The same observation applies to the other
seven families we selected (SI Appendix, Fig. S1A). This raises
the question of whether differences in mutation count could be
related to variations in codon usage in addition to potential
biochemical differences at the protein level.
Therefore, we investigated whether the codon usage of these

genes is related to a specific translation program. Previously,
Gingold et al. (22) described the average bias in codon usage for
different gene functional groups and observed that genes in
two cellular programs—differentiation and proliferation—
preferentially use different synonymous codons. Additionally,
they found that the tRNAs induced during proliferation corre-
sponded to the codons that are enriched in the functional set of
proliferation genes.
To test if functional adaptation to these cellular programs

could have shaped the codon usage in the selected gene families,
we examined how the codon usage of the selected genes corre-
lates to the codon usage of proliferation- and differentiation-
related genes. In order to visualize how the codon usage of the
selected genes correlates with the codon usage of proprolifer-
ative genes, we used a similar approach to Gingold et al. (22) by
applying principal component analysis (PCA) to the relative
codon usage frequencies of all individual genes. By computing
the projection of all major gene sets in the Gene Ontology (GO)
classification, we reproduced the results of Gingold et al. (22)

and revealed two distinct functional poles at the extremes of the
codon usage main projected axis, the first principal component
(PC1) (Fig. 1B). At one extreme (negative values of PC1), there
is a strong enrichment of gene sets that are descendants of the
“cell cycle” term (16 out of the top 30, Fisher’s exact test, two
sided, P < 2.2e-17). At the other extreme (positive values of
PC1), the majority of gene sets are descendants of the “multi-
cellular organism development” or “cell differentiation” terms
(14 out of the top 30, Fisher’s exact test, two sided, P < 5.8e-6).
This observation, together with the previously described tRNA
changes in proliferative versus nonproliferative cells (22), shows
that the two poles of codon usage correspond to two cellular
translation programs. We next calculated the average codon
usage of each coding sequence of the selected cancer gene
families and projected it in the PCA plane (Fig. 1B). In com-
parison to HRAS, we observed that the transcript of KRAS is
composed of codons that are more frequently used by genes
involved in proliferation. This seems to be a general phenome-
non because the codon usage of proproliferative genes was more
similar to the codon usage of the most frequently mutated family
member than it was to the codon usage of the other cognate
family members in all families studied except for the FOXA
family. All FOXA genes have a codon usage that is at the op-
posite pole to proproliferation codon usage (Fig. 1B). In this
family, the cancer driver gene FOXA1 can take the role of a
tumor suppressor (27, 28); unlike the other families where the
most frequently mutated gene is an oncogene with activating
mutations, FOXA1 is typically inactivated by mutations (28)
(binomial test, P < 0.007; SI Appendix, Fig. S1D). This suggests
that the usage of proliferation-associated codons in cancer genes
is a characteristic property of oncogenes.
Next, we wanted to assess the significance of the correlation

between codon usage and mutation frequency. Our main ob-
servation was that the most frequently mutated gene member is
the one that has a codon usage most adapted to the proliferation
codon usage pole (see the negative pole of PC1 in the PCA
projection). Thus, we expected PC1 and mutation frequency to
be negatively correlated. For the 63 gene families that do not
contain any cancer driver gene (noncancer gene families) but are
characterized by a high degree of amino acid sequence similarity
(as is the case within the cancer gene families; see Materials and
Methods), we assumed that there was no specific relationship
between codon usage and mutation frequency, such that the
correlation should be randomly distributed around zero (SI
Appendix, Fig. S1B). We also assumed that the pattern is more
significant when, within a cancer gene family, both a large vari-
ation in codon usage and mutation frequency are observed.
Thus, we compared the distribution of the covariance of PC1 and
mutation frequency for cancer gene families to the distribution
for the background gene families (Fig. 1C and Dataset S1). As
the covariance tends to be large, more weight is given to the
families that present a large variation in codon usage and mu-
tation frequency. Families with little variation in either codon
usage or mutation frequency, on the other hand, present a
smaller covariance. We observed that the covariance of cancer
gene families is significantly more negative than the covariance
of background families (Wilcoxon–Mann–Whitney (W.M.W.)
test, P < 0.008; SI Appendix, Fig. S1B). In particular, seven out of
the eight families (RAS, RAF, COL, RAC, RHO, AKT, and
FGFR) presented a negative correlation, with RAS, RAF, and
RAC being the families with the highest negative covariance
(Fig. 1C and SI Appendix, Fig. S1D).
Next, we examined whether the observed association between

codon usage and mutation frequency was driven by positive se-
lection acting upon mutations in proliferation-associated genes
rather than by a higher background probability of mutations
occurring at the loci of the cancer-associated family members. To
this end, we repeated the correlation analysis using synonymous
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mutations, assuming that these mutations do not undergo any, or
at least less selection than the nonsynonymous mutations. We
observed no significant differences between background families
and cancer families (W.M.W. test, P < 0.76), thereby support-
ing the notion that mutations in the family members with
proliferation-related codon usage confer a selective advantage
(SI Appendix, Fig. S1C).
We then asked whether we could use covariance to identify

additional cancer genes that have not been classified as cancer
drivers in Lawrence et al. (2). The covariance of two background
families, LINGO and CSNK1G, was as negative as the covari-
ance of the RAS, RAC, and RAF families (SI Appendix, Fig.
S1E). Even though none of the members of these two back-
ground families have been categorized as cancer driver genes
based on the mutation frequency approach we used (2), as well
as in cancer driver database IntOGen (29), we found evidence
that the representatives from each family with the strongest
proliferation-associated codon usage (LINGO2 and CSNK1G3;
SI Appendix, Fig. S1E) indeed are linked to cancer. In fact, it has
been experimentally shown that an increase in the levels of
LINGO2 (most frequently mutated member of the family with a
proliferation-related codon usage) leads to cellular proliferation
and the development of other features common to cancer cells
(30). On the other hand, CSNK1G3 has been linked to hepa-
tocellular carcinoma (31), prostate cancer (32), and renal cell
carcinoma (33, 34). However, the functional role of CSNK1G3 in
cancer remains to be mechanistically characterized.
In the previous analyses, we examined gene family triplets that

have a comparable degree of sequence similarity to the sequence
similarity found within the RAS family. Remarkably, when we
extended the analysis of covariance between codon usage and
mutation frequency to gene pairs (of which at least one is an
oncogene), we observed a covariance of 0 or lower for all tested
pairs (SI Appendix, Fig. S2). For example, the most negative
covariance was found for PTPN11/PTPN6. In contrast, when
examining a different set of families in which pairs had at least
one tumor suppressor, three out of four pairs showed a positive
covariance. This result confirms that negative covariance be-
tween mutation counts and proliferation-related codon usage is a
specific feature of oncogenes (binomial test, P < 0.019).

Codon Usage-Specific Changes in KRAS Protein Abundance. The
above analyses suggest that oncogenes with a codon usage sig-
nature characteristic of proliferation-related genes are expressed
at higher levels under a proliferative cell state. To test this hy-
pothesis, we decided to examine the RAS family in further detail.
To determine if the changes in KRAS protein abundance seen

in different cell states occur in a codon-dependent manner, we
established a series of modified cells that coexpress KRAS wild
type (KRASWT) together with a protein that is identical to
KRAS in sequence but has the codon composition of HRAS
(KRASHRAS) (19). The two coding sequences were cloned with
different N-terminal tags (FLAG and 3×HA) so that they could
be distinguished by their size. A bidirectional symmetrical pro-
moter controls the simultaneous expression of the two genes.
This design, which permits controlled expression, enabled us to
exclusively assess codon-dependent changes in protein abundance
while minimizing the impact of other factors (e.g., transcriptional
efficiency and biochemical properties of the protein). Moreover,
both genes are cloned in the same plasmid and therefore are in-
tegrated into the genome with an equal stoichiometry (Fig. 2A and
Dataset S6). As a control, the experiments described below were
also performed with: 1) identical constructs but with the tags
swapped, and 2) identical constructs but their position switched in
relation to the promoter. The latter control was designed to verify
that no expression bias occurs as a result of position (SI Appendix,
Fig. S3 A and B).

Gingold et al. (22) previously reported changes in tRNA
profiles of BJ/hTERT fibroblasts under different cell states: a
quiescent state in which the cells are starved and a proliferative
state in which they are not starved. Therefore, we first coex-
pressed KRASWT and KRASHRAS in BJ/hTERT fibroblasts and
quantified the ratio of KRASWT/KRASHRAS protein in these two
different cell states. We observed that this ratio increases by
more than twofold when the cells are proliferating (Fig. 2B). This
suggests that KRAS codons are more adapted for efficient
translation during proliferation than HRAS codons. Similar re-
sults were found in HEK293 cells (SI Appendix, Fig. S4A).
However, we did not see any significant difference in HeLa cells.
The analysis of the cell cycle by flow cytometry revealed that in
contrast to HeLa cells, BJ/hTERT and HEK293 cells enter the
G1 phase when cells are starved (SI Appendix, Fig. S3C). As
such, HeLa cells are not sensitive to serum starvation and
therefore are not an adequate model to test expression changes
among proliferative and nonproliferative cell states.
We also measured the KRASWT/KRASHRAS ratio at the

transcript level and, interestingly, found the same effect as ob-
served at the protein level: the ratio increases during prolifera-
tion (versus starvation) in both BJ/hTERT and HEK293 cells
(Fig. 2C and SI Appendix, Fig. S4B). Previous studies have shown
that in different species codon optimality has a high impact on
transcript stability (35–37). An interesting hypothesis is that the
dynamics of ribosomal elongation influences mRNA decay. Ri-
bosome translocation is slower through nonoptimal transcripts
and promotes mRNA decay; in Saccharomyces cerevisiae, this is
mediated by the DEAD-box protein Dhh1p (38). Thus, codon
content directly modulates both translation efficiency and mRNA
stability. Our study suggests that KRASWT is composed of co-
dons that are optimal for its expression in proliferative cells but
nonoptimal for expression in starved cells. Therefore, to de-
termine if changes in KRAS transcript abundance were due to
differences in translation efficiency and not transcriptional
regulation, we prevented translation by deleting the translation
initiation site and the ATG start codon. We first confirmed that
cells established with the nonproductive expression cassette had
no KRAS expression (SI Appendix, Fig. S3C). After blocking
the translation of the two genes, we observed that the differ-
ence in the KRASWT/KRASHRAS ratio at the transcript level
was not significant between the nonstarved and starved states
(Fig. 2D). Therefore, changes in the KRASWT/KRASHRAS ratio
are mainly due to a differential translation efficiency (that also
increases the corresponding mRNA level) between the quies-
cent state and the proliferative state.
Our results provide evidence supporting dynamic translational

efficiency by cell state-specific codon usage of transcripts.

Effect of Differences in tRNA Levels on KRAS Abundance. To inves-
tigate whether condition-specific translation efficiency is medi-
ated by differential tRNA expression, we explored the effect of
cell line-specific tRNA abundances on KRAS expression. One
previous study (39) already reported a cell line-specific expres-
sion of KRASWT and KRASHRAS. We therefore hypothesized
that the tRNA content of different cell lines varies as a function
of the proliferation rate and that this in turn may influence
translation efficiency in a codon-dependent manner. To test our
hypothesis, we compared changes in the KRASWT/KRASHRAS
ratio among BJ/hTERT, HEK293, and HeLa cells. We observed
that the expression results in changes of both protein and mRNA
(Fig. 3 A and B). Of these three cell lines, HEK293 exhibits the
highest proliferation rate (SI Appendix, Fig. S5A) and the highest
abundance of KRASWT. We also observed the same effect when
switching the position of the FLAG and 3×HA tags (SI Appendix
and Fig. 3A), thereby confirming that the tags had no influence.
As before, the removal of the translation initiation site and start
codon led to similar transcript levels in all three cell lines
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(Fig. 3C), indicating that translation is an important determi-
nant of mRNA stability. Similar results were found when per-
forming the same experiment in the RAC family after replacing
the codons of RAC1 with those of RAC3 (least mutated family
member); HEK293 cells presented a higher RAC1WT/RAC1RAC3

ratio than HeLa cells (SI Appendix, Fig. S5B and Dataset S6).
The above observations suggested that the effect of codon bias

may be differentially regulated in different cell types. We
therefore hypothesized that if translation efficiency is different in
each cell type, it should match the cell type’s tRNA anticodon

abundance. More specifically, we expected that the relative
synonymous codon frequencies (relative to the amino acid) of
KRASWT would more accurately match the relative abundances
of cognate tRNAs in HEK293 than in HeLa or BJ/hTERT.
Therefore, to associate the amount of tRNAs with codon usage,
we performed hydro-tRNA sequencing (40) and quantified the
relative abundance of tRNAs in BJ/hTERT, HEK293, and HeLa
cells (Datasets S2 and S3). We found 16 tRNAs showing sig-
nificant differences (q < 0.05, t test) between HEK293 and HeLa
cells (SI Appendix, Fig. S6A and Dataset S3). Six of these tRNAs

Fig. 2. The codon usage of KRASWT is adapted for efficient translation during proliferation. (A) Experimental design: the construct coexpresses two genes
coding for the same KRAS protein, but uses different codons. KRASWT is composed of its WT codons, whereas KRASHRAS is primarily enriched in HRAS codons.
We depict how the codon composition is associated with proliferation- or differentiation-related codons. While KRASWT has a proliferation-related codon
composition of 73.7%, that of KRASHRAS is 30.3%. The two genes are differentiated by size using different tags (3×HA and FLAG). The KRAS protein is
represented in dark purple. Distinct tRNAs pools appear in green and blue. (B) Western blot analysis of the levels of KRASWT and KRASHRAS in starved and
nonstarved BJ/hTERT cells. Low- and high-scan intensities are shown, whereby the high-scan intensity enables the visualization of the FLAG-KRASWT signal in
the starved condition. The KRASWT/KRASHRAS protein ratio significantly increases from the quiescent to the proliferative state. (C) Relative quantification of
KRASWT/KRASHRAS by qPCR. The KRASWT/KRASHRAS transcript ratio significantly increases between the two cell states. (D) Translation is inhibited by removing
the translation initiation site and ATG site. We observe that translation inhibition reduces the effect on transcript levels. Results in B–D are representative of
three independent experiments with three technical replicates each. Values are relative to the starved condition (KRASWT/KRASHRAS = 1). Error bars represent
SEM. n.s, not significant; *P < 0.05; **P < 0.01 (unpaired Student t test).
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are more highly expressed in HEK293 cells than in HeLa cells
and match codons enriched in the coding sequence of KRASWT
(TCT, AAA, AGT, GAT, GAA, and GCA). One tRNA,
tRNASerCGA, is more highly expressed in HEK293 cells but its
associated codon TCG is not enriched in KRASWT. On the other
hand, five of the tRNAs whose expression levels were signifi-
cantly higher in HeLa cells corresponded to codons enriched in
HRAS and therefore in KRASHRAS (ATC, GAG, GAC, ACG,
and AAG). Only two tRNAs with a higher expression in HeLa
cells (tRNASerTGA and tRNAValAAC) did not match codons
enriched in KRASHRAS (Fig. 4A). Overall, we found 11 codons
matching the expected tRNAs (P < 0.028, binomial test). Simi-
larly, we found seven of the tRNAs that were more highly
expressed in HEK293 cells than in BJ/hTERT cells (SI Appendix,
Fig. S6B and Dataset S3) to match the codons enriched in
KRASWT (TCT, AAA, AGT, TTG, GAT, GCA, and AGA).
One exception was tRNAGlyCCC, which is more highly expressed
in HEK293 cells but the associated codon GGG is not enriched
in KRASWT. With regards to those tRNAs whose expression
levels were significantly higher in BJ/hTERT cells, seven corre-
sponded to enriched codons in KRASHRAS (ATC, CGG, TCG,
AGC, CGA, GGG, and AAG). Overall, we found 14 out of 16
codons matching the expected tRNAs when comparing HEK293
and BJ/hTERT (P < 0.0063, binomial test; Fig. 4B). Therefore,
the difference in relative tRNA supply between cell lines could
explain the observed variation in protein levels of KRASWT and
KRASHRAS. In a previous study where different codons of
KRAS were changed, it was observed that certain replacements
resulted in significant increases in KRAS expression, cumula-
tively reaching the levels of HRAS (19). These codon changes
included GCA to GCC, AAA to AAG, and ATT to ATC, which
correspond to the anticodons of tRNAs that are differentially
expressed between HEK293, BJ/hTERT, and HeLa cells. In

contrast, changing GAA to GAG and CCT to CCC did not result
in any protein abundance changes (SI Appendix, Fig. S6C).
Additionally, we investigated whether the codons correspond-

ing to the tRNAs that significantly change are also enriched in the
most prevalent oncogenes of the RAS, RAF, and RAC families.
Overall, the AAA, GCA, GAA, AGT, and GAT codons were
enriched in KRAS, BRAF, and RAC1, and the matching
tRNAs had significantly higher levels in HEK293 cells (SI Ap-
pendix, Fig. S7A). Conversely, the codons enriched in HRAS,
RAF, and RAC3 (ACG, AAG, GAG, and GAC) matched the
tRNAs in HeLa (SI Appendix, Fig. S7A). This leads to a sig-
nificant association between relative tRNA abundance and
relative codon usage (P < 0.0018, binomial test; SI Appendix,
Fig. S7B). Similarly, we found a significant relationship between
the relative tRNA abundance of HEK293 and BJ/hTERT cells
and the codon usage of the three families (P < 0.0035, binomial
test; SI Appendix, Fig. S8 A and B). Next, we repeated the
analysis considering wobble base pairs, which are known to play
an important role in codon–anticodon interactions. We calcu-
lated normalized weights within each amino acid family (Ma-
terials and Methods). Again, we found a significant association
to the codon usage of the studied genes (SI Appendix, Figs.
S9–S11 and Dataset S4). Finally, we associated proliferation-
specific codons to the tRNAs that are differentially expressed in
the studied cell lines. For example, we found that AspATC and
LysTTT from HEK293 cells match the codons that are at the
extreme of the proliferation pole (SI Appendix, Fig. S12).
Finally, as our analyses hinted toward a link between an ad-

aptation of KRAS translation to proliferation and positive se-
lection for mutations in cancer, we tested if the RAS genes differ
in their mutation frequencies between low- and high-
proliferating cancer types. The expression of KI-67 is associ-
ated with cell proliferation and growth (41). Therefore, we

Fig. 3. Codon-related changes in KRAS levels in different cell lines. (A) Western blot analysis of the levels of KRASWT and KRASHRAS in BJ/hTERT, HEK293, and
HeLa cells. Low- and high-scan intensities are shown, whereby the high-scan intensity enables better visualization of the FLAG-KRASWT signal in BJ/hTERT and
HeLa cells. The KRASWT/KRASHRAS protein ratio varies between the different cell lines. (B) Relative quantification of KRASWT/KRASHRAS by qPCR. The KRASWT/
KRASHRAS transcript ratio also varies between the cell lines. (C) Translation inhibition reduces the differential effect on transcript level observed in the cell
lines. Results in A–C are representative of three independent experiments with three technical replicates each. Values are relative to HEK293 cells
(KRASWT/KRASHRAS = 1). Error bars represent SEM. n.s, not significant; **P < 0.01; ***P < 0.001 (unpaired Student t test).
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estimated cancer type-specific proliferation rates by averaging
the expression values of KI-67 in tumor samples from the
TCGA and divided cancer types into those with low and those
with high proliferation. We observed that compared to NRAS
and HRAS, KRAS has significantly higher mutation rates in
high proliferation tumors (P < 2.2e-16, chi-squared test; SI
Appendix, Fig. S13 A and B). We next asked whether the cancer
type-specific association between KI-67 expression and KRAS
mutation frequency holds true at the patient level. To this end,
we stratified samples by the mutation status of RAS isoforms in
six cancer types (Materials and Methods) and compared KI-67
expression between the groups (SI Appendix, Fig. S13C). In all
cancer types, KRAS-mutated samples were associated with a
higher KI-67 expression than NRAS-mutated samples, which in
turn showed a higher KI-67 expression than HRAS-mutated
samples. The groupwise expression differences for each can-
cer type were not or only marginally significant due to the high
variation within the groups and the low number of HRAS-
mutated samples. However, all comparisons followed the
expected trend of median KI-67 expression in KRAS-mutated
samples > median KI-67 expression in NRAS-mutated sam-
ples > median KI-67 expression in HRAS-mutated samples
(P = 0.008, binomial test).
Altogether, our results provide evidence to support a dynamic

translational program in which specific changes in tRNA abundance
can shape the expression of proliferation-related transcripts.

Discussion
Codon usage and tRNA abundance are crucial for efficient and
accurate translation of mRNA into protein. Previous studies
have found that tRNA repertoires are dynamic in a manner that
facilitates selective translation of specific transcripts (22–24, 26).
Here, we investigate whether an oncogenic translation program
shapes the abundance of cancer driver genes. We describe pro-
tein families that have strong differences in both codon usage
and mutation frequencies within the family. The observed codon
bias reveals a proliferation-specific codon usage by the family
members that are more prevalent in cancer. Specifically, the
RAS, RAF, and RAC families exhibit the largest negative co-
variance between mutation frequency and proliferation-associated
codon usage. Additionally, we observed the same pattern in can-
cer families with two members (e.g., PTPN) and in families that
have been shown to be involved in cancer (e.g., LINGO) despite
not being classified as cancer drivers. This raises the question of
whether these transcripts are more effectively translated in pro-
liferative cells than their closely related family members.
We focused on the RAS family and experimentally showed

that the translation efficiency of KRASWT is up-regulated in
proliferative cells in comparison to the translation efficiency of
KRASHRAS. This same tendency was also observed with RAC1WT
and RAC1RAC3. Additionally, we found that translation efficiency
is a determinant of transcript abundance. This observation has
been described previously in Homo sapiens (37), S. cerevisiae (35)
and Escherichia coli (36). Here, we consistently show that the

Fig. 4. Association of differentially expressed tRNAs and relative codon usage of KRASWT and KRASHRAS. (A) Log2 fold change of the relative codon usage
(pseudocount +1) between KRASWT and KRASHRAS. Codons corresponding to tRNAs that are differentially expressed between HEK293 and HeLa cells are
highlighted. The Right represents the log2 fold change of relative tRNA abundance of the tRNAs that are differentially expressed between HEK293 and HeLa
cells. (B) Log2 fold change of the relative codon usage (pseudocount +1) between KRASWT and KRASHRAS. Codons corresponding to tRNAs that are differ-
entially expressed between HEK293 and BJ/hTERT are highlighted. The Right represents the log2 fold change of relative tRNA abundance of the tRNAs that
are differentially expressed between HEK293 and BJ/hTERT cells. Error bars represent SEM of three independent experiments. Binomial tests were performed
in A and B (one-sided, P values shown below plots) by calculating the probability of the correct number of associations between relative tRNA expression and
codon usage.
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changes in KRASWT/KRASHRAS transcript abundance between
cell types and cell states decrease when translation is suppressed.
Our observations are in agreement with recently identified

alterations in transcript-specific translation that emerge as driv-
ers of cellular transformation. For example, it has been shown
that up-regulation of specific tRNAs (tRNAGluTTC and
tRNAArgCCG) in metastatic cells leads to an increase in the
amount of certain proteins, specifically EXOSC2 and GRIPAP1,
that play an important role in metastasis (23). Indeed, we ob-
served similar results here for KRAS. Consistent with previous
reports (42, 43), we also observed that specific tRNAs vary be-
tween different cell lines, which could explain the differences in
KRAS expression between BJ/hTERT, HEK293, and HeLa
cells. One of these tRNAs, tRNAGluTTC, is also up-regulated in
metastatic breast cancer cells as mentioned above. Moreover, we
found differentially expressed tRNAs corresponding to codons
that were previously reported to change KRAS protein levels
when synonymously mutated (19). Taken together, our results
suggest that the expression of only a few specific tRNAs, rather
than the expression of multiple tRNAs, is required to increase
KRAS translation efficiency. Particularly, we observed that co-
dons corresponding to the tRNAs that mediate these changes
are also enriched in the BRAF and RAC1 oncogenes. Therefore,
our results suggest that certain tRNAs could be used as markers
of oncogene-specific translation. Determining the tRNA abun-
dance of different cell types may reveal previously unseen con-
nections between translation and oncogene prevalence in cancer.
It would also be interesting to investigate how tRNA modifica-
tions could influence oncogene translation. Furthermore, Supek
et al. (44) showed that selection acts on somatic synonymous
mutations of oncogenes in tumor evolution. In many cases these
synonymous mutations are associated with changes in oncogene
splicing in tumors. Importantly, synonymous mutations in KRAS
have been shown to impact its expression (45) and transforming
potential (46). It would be interesting to further investigate
whether some of the recurrent synonymous mutations in onco-
genes correspond to changes that enrich their coding sequence
with proliferation-related codons, thereby yielding a greater
translation efficiency. Importantly, it should be considered that
the translational output from any given mRNA is also influ-
enced by its secondary structure aside from codon usage. Dis-
entangling the individual roles played by each of these two
factors in translation remains difficult.
Activating mutations of oncogenes are a product of the se-

lection that occurs during tumor initiation to produce the ideal
level of signaling. It is plausible that selection acting upon a gene
depends on the level of expression of that gene as well as on the
function of the gene product itself. However, it is difficult to
disentangle how differences in protein sequences and expression
levels of RAS family members contribute to RAS protein-
specific roles and selection advantage. The physiological role
of the RAS proteins during development is intriguing because
KRAS for example is the only family member that is embryon-
ically lethal in homozygous null mice (17). This feature is also
observed within the RAC family (47, 48). Interestingly, when the
KRAS locus is substituted to encode the HRAS protein after
exon 2 (i.e., KRAS codons are conserved in exon 1 and exon 2),
mice are viable, yet display cardiomyopathies in adulthood (18).
Relatedly, Pershing et al. (49) observed that upon replacing
KRAS codons with HRAS codons in one exon, mice became
more resistant to lung tumors and the number of KRAS muta-
tions decreased. It is therefore likely that in addition to subtle
differences in particular functions, the changes in the levels of
the RAS proteins are important determinants of selection during
tumor evolution. Specifically, our results suggest that translation
efficiency might contribute to mutation frequency differences
between genes. It is therefore tempting to speculate that cancer
cells could take advantage of the translation program of dividing

cells to boost the translation of transcripts to their own growth
advantage.
Our results indicate that in oncogene families the gene most

frequently mutated in cancer is the one that has a codon usage
adapted to cell proliferation. There are several possible expla-
nations for this. The most obvious is that oncogenes with a codon
usage adapted to cell proliferation will be more expressed in
dividing cells like cancer than their counterparts and therefore
undergoing stronger selection to be mutated in cancer. An al-
ternative explanation is that in oncogene families some members
have different biochemical properties that favor cell division
compared to the others. Overexpression of these genes in resting
cells could promote tumorigenesis and therefore they evolved to
have a codon usage that favors translation only in cells which are
dividing (i.e., in embryogenesis or fast dividing cells like colon
epithelial cells). These different possible explanations for our
observations should be tested experimentally to elucidate which
one is correct.
It has already been suggested that differences in codon usage

might be related to the imbalance of mutation frequencies within
the RAS family; the constitutively activated form of highly
translated HRAS could lead to an overactivation of the MAPK
pathway, ultimately leading to oncogene-induced senescence and
therefore a possible favoring of KRAS mutations (50). On the
other hand, an overactivation of RAS signaling can be beneficial
for many tumors. Maintaining the balance between growth ad-
vantage and senescence evasion creates a sweet spot of optimal
RAS signaling activation (51) (SI Appendix, Fig. S16). Our ob-
servation that genes adapted for optimized translation in pro-
liferating cancer cells are under stronger positive selection for
activating mutations suggests that in addition to the type of ac-
tivating mutation, protein abundance is also important to place
KRAS in the sweet spot for optimal signaling (51, 52).
Taken together, our work not only addresses a fundamental

aspect of RAS biology but also provides insight into the con-
troversial issue of how codon bias can influence protein ex-
pression. Collectively, our findings demonstrate that codon-
driven translation efficiency can modulate protein expression
of oncogenes in different cell contexts.

Materials and Methods
Data sources, computational analysis, sample preparation, and experimental
procedures are fully described in SI Appendix, Materials and Methods.

Paralogs Ensembl. To define gene families, we retrieved information re-
garding protein sequence similarity and family membership from Ensembl.
Further details are provided in SI Appendix.

TCGA. Mutation data were obtained from TCGA. We retrieved somatic mu-
tations in coding regions for 20 types of cancer. Further details are provided in
SI Appendix.

Cancer Gene Catalog. We considered cancer driver genes to be those genes
that had a significant (q < 0.01) number of nonsilent mutations in at least 1
out of 21 cancer types in 4,742 patients as defined by Lawrence et al. (2).

Coding Sequences. The coding sequences of H. sapiens were downloaded
from the Consensus Coding Sequence (CCDS) project (ftp://ftp.ncbi.nlm.nih.
gov/pub/CCDS/), release 2016/09/08. In the case of noncancer genes, one
unique canonical coding sequence was arbitrarily chosen for each protein
based on Uniprot mapping to the CCDS. For those genes belonging to the
selected cancer gene families, the canonical coding sequence was chosen
according to the corresponding canonical protein as defined in Uniprot.

GO Gene Sets. Gene ontology was downloaded as a MySQL dump of the
amiGO database, release 2017/01, and human gene annotations were
downloaded from the amiGO database, release 2018/01/04. Further details
are provided in SI Appendix.
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Codon Usage PCA. We applied PCA to the relative synonymous codon fre-
quencies (52) of all individual human coding sequences. Further details are
provided in SI Appendix.

Quantification of tRNA Expression. tRNAseq mapping was performed using a
specific pipeline for tRNAs (53). The basic pipeline was adapted to paired-end
sequencing data. Further details are provided in SI Appendix.

Statistical Analyses. For hypothesis testing, we performed two-sided Student
t tests, two-sided Wilcoxon–Mann–Whitney tests, and one-sided binomial
tests. In the differential expression analyses, a false discovery rate (FDR)
correction was used to account for multiple testing.

Hydro-tRNA Sequencing. Total RNA from HEK293, BJ/hTERT, and HeLa cells
were extracted using the miRNeasy Mini kit (Qiagen). For each sample, 20 μg
of total RNA was treated following the hydro-tRNAseq protocol (40). Further
details are provided in SI Appendix.

Data Availability. All data generated during this study are included in this
published article and its SI Appendix. Sequencing data generated during this
study have been deposited in ArrayExpress database (54) under accession
number E-MTAB-8144. BJ/hTERT sequencing data are available from Gene
Expression Omnibus (55) under the accession code GSE137834 (56). All TCGA
data (57) are available for download through the Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov/). Codon usage of oncogenes and
tRNA mapping are reported in the GitHub repository: https://github.com/
webermarcolivier/codon_usage_oncogenes; https://github.com/hexavier/
tRNA_mapping.
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