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ABSTRACT

While large-scale studies applying various statisti-
cal approaches have identified hundreds of mutated
driver genes across various cancer types, the contri-
bution of epigenetic changes to cancer remains more
enigmatic. This is partly due to the fact that certain
regions of the cancer genome, due to their genomic
and epigenomic properties, are more prone to dys-
regulated DNA methylation than others. Thus, it has
been difficult to distinguish which promoter methyla-
tion changes are really driving carcinogenesis from
those that are mostly just a reflection of their ge-
nomic location. By developing a novel method that
corrects for epigenetic covariates, we reveal a small,
concise set of potential epigenetic driver events. In-
terestingly, those changes suggest different modes
of epigenetic carcinogenesis: first, we observe re-
current inactivation of known cancer genes across
tumour types suggesting a higher convergence on
common tumour suppressor pathways than previ-
ously anticipated. Second, in prostate cancer, a can-
cer type with few recurrently mutated genes, we
demonstrate how the epigenome primes tumours to-
wards higher tolerance of other aberrations.

INTRODUCTION

The epigenome is the complete set of epigenetic modifica-
tions within a cell, including DNA methylation and histone
modifications, and plays a fundamental role in coordinating
the emergence of tissue-specific patterns of gene expression
and chromatin structure during tissue differentiation and
development of multicellular organisms (1–3). Of these epi-
genetic marks, DNA methylation is the best characterized
in mammals and serves a variety of functions, including ge-
nomic imprinting, X-chromosome inactivation in females,
silencing of transposable elements and regulation of gene
expression, with DNA methylation at gene promoters gen-

erally being associated with their transcriptional repression
(4–6).

Tumours evolve under selection acting on alterations giv-
ing a growth advantage or disadvantage to the clones car-
rying those alterations. In tumour cells, the DNA methyla-
tion landscape is profoundly disturbed compared to their
normal counterparts. Most tumours exhibit focal increases
in methylation, particularly at CpG islands associated with
gene promoters, against a background of genome-wide
DNA methylation loss (7–9). Such changes in DNA methy-
lation may occur during the very earliest stages of tumori-
genesis, with alterations in DNA methylation observed even
in pre-cancerous lesions associated with several tumour
types (10–12). Yet, it is largely unclear which of these DNA
methylation changes contribute to tumor initiation and pro-
gression and which are merely passenger events.

Hypermethylation of specific gene promoters and the as-
sociated repression of transcription has been recognized as
a key mechanism of tumour suppressor gene (TSG) inacti-
vation in cancer (13–15). In some cancers, genes may even
be more frequently inactivated through promoter hyperme-
thylation than by mutation (16,17). Notably, in sporadic
tumours, somatic mutations in certain DNA repair genes,
such as BRCA1 and MLH1, are quite rare; however, these
genes are very often silenced through hypermethylation of
their promoters (18). For example, hypermethylation of the
MLH1 promoter appears to be responsible for most of the
microsatellite instability (MSI) cases observed in sporadic
colorectal, endometrial and gastric cancers, causally con-
necting perturbations in DNA methylation with the tumour
mutation rate (19–21). Meanwhile, genes regulating DNA
methylation, including DNMT1 and DNMT3A, the TET
family and IDH1 and IDH2, are themselves frequently mu-
tated in cancer and their mutation status is associated with
changes to the cancer epigenome (22,23).

A number of different approaches have been developed
to detect differential methylation between populations (24–
27), though few of them are specifically designed for iden-
tification of differentially methylated regions in cancer. Ac-
cordingly, while a few studies have sought to catalogue the
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gene promoters which display altered DNA methylation
in cancer (24,28,29), these efforts have struggled to distin-
guish which methylation events play an active role in can-
cer development from those which are most likely inciden-
tal and unimportant to tumorigenesis. This is analogous to
the problem of separating driver and passenger mutations
in cancer genomics.

A major confounder with studies seeking to discover mu-
tated cancer driver genes has been the variation in muta-
tion rates across different regions of cancer genomes, lead-
ing to the identification of many likely false-positive drivers
(30). DNA methylation changes in cancer have also been
shown to vary across the genome in a semi-predictable man-
ner, with methylation loss often occurring in late replicat-
ing regions and methylation gain in regions of open chro-
matin (31–33). Thus, it is likely that a similar problem to
that involving identification of mutated driver genes has
undermined differentially methylated gene studies in can-
cer and led to the identification of many false positive epi-
genetic drivers whose altered methylation is likely merely
due to their genomic location and incidental to tumorigen-
esis. Indeed, it has been noted that there are typically 1000s
of differentially methylated genes in tumours, with only a
tiny fraction of them overlapping TSGs and oncogenes (32).
This raises the question which of those genes ultimately con-
tribute to tumour initiation and progression by changes of
their DNA methylation state.

Thus, we present a computational tool, MethylDriver,
to distinguish genomic regions whose differential methy-
lation may play a causative role in cancer and can be
considered putative epigenetic driver events from those
which are likely not causally involved and can be con-
sidered epigenetic passenger events. MethylDriver accom-
plishes this by comparing the DNA methylation change
in genomic regions between tumour samples and matched
normal samples while taking account of the variation in
the propensity for methylation change in different regions
across the cancer genome. Like this we can directly quan-
tify the excess of DNA methylation change compared to
the background (i.e. expected) change of DNA methyla-
tion at a given promoter and thereby identify and elim-
inate spurious cases of expected DNA methylation loss
or gain (Figure 1). We applied MethylDriver to 678 pairs
of matched tumour and normal samples across 13 differ-
ent cancer types from The Cancer Genome Atlas (TCGA)
in order to identify putative driver methylation events at
promoters.

MATERIALS AND METHODS

Promoter definition

Promoter genomic coordinates were downloaded for hg19
from the EPDnew promoter database (34). These promot-
ers were resized to 1000 bp by adding the necessary num-
ber of bases upstream to the downloaded transcription start
sites (TSS). We chose to use 1 kb as the promoter size
as it is intermediate between promoter sizes used previ-
ously by other approaches to determine DNA methylation
changes in cancer ranging typically from the TSS ± 300
bp to TSS ± 2 kb (24,35). The promoters were then sub-

set for those regulating autosomal protein-coding genes that
also overlapped one or more probes from the Illumina In-
finium 450K BeadChip array. Probes which bind to non-
CpG sites, are for detection of SNPs, which were previ-
ously flagged as being cross-reactive (36), or were associ-
ated with a large number of missing values (≥10% of all
tumour samples) in the TCGA methylation files were ex-
cluded. In addition, we also removed probes whose beta
values had a Pearson’s correlation value of ≥0.4 with tu-
mour purity in BRCA. We chose to use BRCA as it is the
cancer type with the largest number of tumour samples in
TCGA and used purity scores calculated using the Infini-
umPurify R package (values downloaded from https://doi.
org/10.5281/zenodo.253193) (37). We used Pearson corre-
lation as we often observed strong linear relationships be-
tween tumour purity and probe methylation values. This re-
sulted in a final set of 94 101 probes which overlap 23 208
promoters regulating 14 773 distinct genes, with 5956 genes
having two or more different promoters (see Supplementary
Table S1 for a complete list of promoter genomic coordi-
nates and associated genes and Infinium 450K probes).

Enhancer regions for hg19 were downloaded from EN-
SEMBL using the biomaRt R package (38).

TCGA promoter methylation

Illumina Human Methylation 450 files with probe beta val-
ues for TCGA tumour and normal samples were down-
loaded from the Genomic Data Commons (GDC) using
the GDC-client tool. Promoter methylation values for each
sample were calculated by taking the mean of beta values of
the probes overlapping each promoter.

Thirteen cancer types had adequate matched tumour-
normal pairs to test differential methylation: bladder
urothelial cancer (BLCA, n = 21), breast invasive cancer
(BRCA, n = 90), colon adenocarcinoma (COAD, n = 38),
esophageal carcinoma (ESCA, n = 16), head and neck
squamous cell carcinoma (HNSC, n = 50), liver hepato-
cellular carcinoma (LIHC, n = 50), lung adenocarcinoma
(LUAD, n =29), lung squamous cell carcinoma (LUSC,
n = 40), kidney renal clear cell carcinoma (KIRC, n =
160), kidney renal papillary cell carcinoma (KIRP, n = 45),
prostate adenocarcinoma (PRAD, n = 50), thyroid carci-
noma (THCA, n = 56), uterine corpus endometrial carci-
noma (UCEC, n = 33).

Epigenetic covariates for DNA methylation

BigWig files for 877 features, comprising 33 distinct epige-
netic marks profiled across up to 111 different cell/tissue
types, were downloaded from the Roadmap Epigenomics
Project (39). Each of the 33 epigenetic marks is measured in
between 1 and 111 of the different samples. For example,
H3K27me3 and H3K4me3 are measured in all 111 sam-
ples, H3K27ac is measured in 82 samples, H3K79me2 in
5 samples and H3K79me2 in only 1 sample. As we con-
sider the same epigenetic mark measured in different sam-
ples to be different features, we have 111 different fea-
tures for H3K27me3 measured in different samples, 82 fea-
tures for H3K27ac measured in different samples, 5 fea-
tures for H3K79me2 measured in different samples, just
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Figure 1. MethylDriver algorithm. Left-hand panels show association of promoter methylation change in colon tumour samples with their epigenetic
features in healthy cells. Middle plot depicts the placement of promoters in a multivariate space using principal components (PCs) derived from the
epigenetic promoter features in healthy cells and the subsequent identification of the 100 most similar neighbour promoters using Euclidean distance for
two different promoters. The right-hand panels depict the fitting of normal distributions using the methylation change of a promoter’s neighbourhood,
leading to different outcomes for two gene promoters with a similar methylation change in colon adenocarcinoma: the TSG APC is affected by methylation
change significantly greater than expected given its neighbourhood, while the change for HOXC11, a gene unexpressed in normal colon adenocarcinoma
samples and that is significantly hypermethylated without correcting for epigenetic covariates, fits within what would be expected for its neighbourhood.

one feature for H3K79me2 etc. The values of these fea-
tures in promoters were calculated using the bigWigAvera-
geOverBed tool from UCSC (40) and using the mean of cov-
ered bases only. In addition, we also calculated CpG density,
the number of CpGs in a promoter divided by the promoter
length, for each promoter and used this along with the
Roadmap features, bringing our total number of features
to 878.

MethylDriver algorithm

In order to identify which promoters are most similar
to each other epigenetically, principal component analysis
(PCA) was performed on the full set of promoters using
all of the 878 promoter features. For each individual pro-
moter, which we call the home promoter, Euclidean dis-
tances to all the other promoters were calculated using the
principal component values and used to determine a se-
lected number of the most epigenetically similar promoters
to the home promoter, which we refer to as the home pro-
moter’s epigenetic neighbourhood. If any other promoters
overlapped the genomic range of the home promoter, they
were excluded from becoming part of it’s epigenetic neigh-
bourhood.

For our analyses, we used epigenetic neighbourhoods of
size 100. We also compared the results of using a range of
different neighbourhood sizes and found that similarly sized
neighbourhoods tend to give quite similar results (e.g. the
putative drivers identified using neighbourhoods of size 100
and 200 had a Jaccard index of around 0.74). We found that
a neighbourhood size of 200 gave the highest mean fold en-
richment for TSGs across the different cancer types (3.9),
with 100 a close second with a mean of 3.82. However, in

terms of statistical significance, neighbourhood sizes of 25,
50 and 100 each had significant overlaps with 10 different
cancer types, while larger neighbourhoods resulted in fewer
cancer types with a significant overlap.

For overlap with unexpressed genes, a neighbourhood
size of 400 had the lowest mean fold depletion with a mean
depletion of 0.29. A size of 100 was similarly low with a
mean depletion of 0.446. In terms of significant overlaps, a
neighbourhood size of 25 resulted in significant overlap in
13/13 cancer types, with neighbourhoods of 50–2000 each
resulting in 12 significant cancer types.

We chose to use a neighbourhood size of 100 as we felt
if offered a good compromise between fold enrichment of
these validation gene sets and statistical power.

For each cancer type, the mean difference in DNA methy-
lation values between tumour and matched normal samples
for each promoter were used to fit normal distributions to
the epigenetic neighbourhood of each promoter, called its
neighbourhood methylation change distribution. We also
repeated our analyses fitting beta distributions instead of
normal distributions and discovered that the resulting sig-
nificant promoters were almost identical. We therefore de-
cided to carry out all further analyses using the lists of pro-
moters obtained by fitting normal distributions.

The significance of the mean methylation change value of
a home promoter was calculated using the cumulative distri-
bution function of its neighbourhood methylation change
distribution and the resulting P-values were corrected by
FDR. Promoters which differed significantly from their
neighbourhood distribution and had a mean increase in
methylation in tumours compared to matched normal sam-
ples were designated hypermethylated, while those that dif-
fered significantly from their neighbourhood distribution
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and had a mean decrease in methylation were designated
hypomethylated.

We also tested MethylDriver using just Roadmap features
from the tissue of origin for both BRCA and COAD (i.e.
features from breast or colon samples, respectively) but did
not see any improvement in performance.

Comparison with other tools

The uncorrected sets of differentially methylated genes
were identified using Wilcoxon signed-rank tests with
the promoter methylation values from matching tumour-
normal pairs and correcting for multiple testing using the
Benjamini–Hochberg procedure.

MethylMix version 2.18.0 (25) was run by providing a
table with the methylation values of promoters in tumour
samples, a table with the promoter methylation values in
matching normal samples and a table with the gene expres-
sion values in tumour samples for a given cancer type, with
default settings for all other parameters. Since MethylMix
requires tables with matching promoter methylation values
and gene expression values, it was run choosing only one
promoter for each gene.

Comb-p (27) was run as the following command ‘comb-
p pipeline -c 4 –seed 0.05 –dist 750 -p $BED’, where $BED
is a sorted BED file with the coordinates of all probes and
a fourth column with the P-values from Wilcoxon signed-
rank tests for the differences between the probe methylation
values in tumour and normal samples. Promoters were then
overlapped with the resulting significant regions to deter-
mine differentially methylated promoters.

Differentially methylated genes from DNMIVD (41) for
TCGA were downloaded from http://119.3.41.228/dnmivd/
download/, and differentially methylated genes for RESET
were retrieved from Saghafinia et al (24). The top 500 differ-
entially methylated genes for each cancer type from Meth-
Sig were retrieved from Pan et al. (35).

Gene set definitions

In order to define the sets of differentially expressed genes
TCGA RNA-seq HTSeq count files were downloaded using
the GDC-client for each cancer type. The files were filtered
to only include protein-coding genes and then analysis of
differential expression between tumour and normal samples
was performed using DESeq2 (42).

Normal tissue-specific unexpressed protein-coding genes
were defined as genes which had a median TPM value of 0
and also a max TPM value <5 in the available matching nor-
mal samples for each cancer type. This resulted in an average
of almost 1900 unexpressed genes per cancer type (see Sup-
plementary Table S2 for full lists of unexpressed genes for
each cancer type). It could be that many of the unexpressed
genes may be associated with the small number of promot-
ers whose methylation is positively associated with gene ex-
pression, making them unsuitable candidates for false posi-
tive hypermethylated driver genes. To rule out this possibil-
ity, we checked the overlaps of unexpressed genes and genes
with promoters who have a Spearman correlation >0.1 with
TPM of the associated gene. This was only the case for <5%
of unexpressed genes.

GO term enrichment was performed using the Consen-
susPathDB web tool (43), using all gene ontology levels of
the biological process and molecular function domains. All
unique genes from our promoter set were used as the back-
ground.

A total of 177 TSGs (https://www.uniprot.org/
uniprot/?query=keyword:KW-0043) and 229 onco-
genes (https://www.uniprot.org/uniprot/?query=keyword:
%22Proto-oncogene%20[KW-0656]%22) were down-
loaded from Uniprot (9 September 2020), filtering for
human protein-coding genes (see Supplementary Table S3
for full lists of oncogenes and TSGs). Paralogous gene pairs
were downloaded using biomaRt. GO semantic similarity
for gene pairs was calculated using the GOSemSim R
package with Biological process GO terms (44).

Statistical analyses

All statistical analyses were performed using R version
4.0.3.

RESULTS

Promoter methylation changes in cancer can be partially ex-
plained by epigenetic features in normal cells

Promoter methylation changes occur frequently in cancer,
with samples typically exhibiting thousands of promoters
with altered methylation (Figure 2A), fitting similar ob-
servations made by others before (24). DNA methylation
changes in cancer have previously been shown to be closely
associated with properties of the genome and epigenome,
including trimethylation of H3K27me3 (45–47), as well as
replication timing and chromatin accessibility (31–33). We
thus postulate that many of these events may be passenger
events whose methylation change is due to their genomic lo-
cation and associated epigenetic properties rather than their
role in tumorigenesis. We first investigated which genomic
and epigenomic features in normal cells correlate with DNA
methylation changes at promoter elements in cancer, us-
ing data from the Roadmap Epigenomics Project (39). Sup-
plementary Figure S1 displays the correlation values for
the different chromatin features and promoter methylation
change in COAD.

To quantify how much variation in tumour promoter
methylation change we can explain with the complete set of
epigenetic features, we fit multivariable linear models to the
methylation change in each patient. We observed that we
can explain a substantial proportion of the variation (ad-
justed R2 95% confidence interval = 0.3 ± 0.01). The pro-
portion of variance explained differs across tumour types
and also between patients with the same tumour type, with
a median adjusted R2 of over 0.4 for patients with both
ESCA and PAAD. In contrast, THCA had a median ad-
justed R2 of only 0.1 (Figure 2B). While the relationships
between DNA methylation change and levels of epigenetic
marks tended to be non-linear (see scatter plots in Figure
1), we used linear models simply for their ease of interpre-
tation.

Interestingly, we observed that the promoters which are
predicted by the multivariable linear models to undergo the
greatest methylation change in cancer (either gain or loss)
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Figure 2. Methylation change and variance explained by Roadmap features. (A) The number of promoters per patient with an absolute methylation change
>0.1. (B) The adjusted R2 of linear models fit to the promoter methylation change in individual TCGA samples using Roadmap promoter features. Red
diamonds indicate the adjusted R2 of models fit to the consensus methylation change for each cancer type (the mean change value of each promoter in all
patients with a given cancer type). Methylation changes in cancer types with greater numbers of promoters with methylation changes above 0.1 tend to be
better explained by the Roadmap features. (C) ranking of the most important epigenetic marks/genomic properties for determining methylation change
in cancer. A modified form of stepwise selection in which each epigenetic mark could only be added once (and thus excluding multiple features comprising
the same epigenetic mark profiled in different cell types) was used to identify the 10 most epigenetic marks or genomic features for predicting methylation
change in each cancer type. To identify which marks were the most important across the models fit to the different cancer types, we performed a type of
positional voting in which features received a number of points based on how important they were to each model. The most important feature for a cancer
type was given a score of 10 points, the second most important feature a score of 9 points and so on, until the 10th most important feature, which was
given a single point. The sum of the ranking scores divided by the number of models, 13, gave the mean feature ranking for a mark.
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have substantially higher variation in methylation levels in
normal samples than promoters predicted to experience lit-
tle methylation change in cancer (Supplementary Figure
S2).

We used a modified form of forward stepwise selection
to identify the 10 most important epigenetic marks or ge-
nomic features for predicting DNA methylation change in
each cancer type. As we treat the same epigenetic mark pro-
filed in different samples as separate features, we can have
many different features related to the same epigenetic mark.
For example, H3K27me3 is profiled in 111 different sam-
ples in the Roadmap Epigenomics project and thus we have
111 different H3K27me3 features. We modified traditional
feature selection to ensure that only one feature could be
selected for each epigenetic mark. Thus, if H3K27me3 lev-
els in liver is identified as the most predictive feature, all
other H3K27me3 features will be excluded when searching
for the successive most useful features. We excluded WGBS
features from selection as the relationship between DNA
methylation levels in normal cells and methylation change
in cancer should be obvious, with highly methylated ge-
nomic regions in normal cells exhibiting a tendency to gain
methylation in cancer and lowly methylated regions exhibit-
ing a tendency to gain methylation. We created a meta-
ranking for features by combining their ranking in individ-
ual cancer types (Figure 2C).

H3K27me3 was the most predictive mark overall, being
the top mark in 10 out of 13 cancer types and fitting with
observations made previously. We also identified methyla-
tion of H3K4 as being highly predictive of DNA methy-
lation change in cancer, especially mono- or dimethylation
of H3K4, both of which had greater predictive power than
H3K4me3. H3K9me3 and H3K27ac were also among the
top features. CpG density was surprisingly the 5th most im-
portant feature overall, ranking ahead of the vast majority
of epigenetic marks studied by the Roadmap Epigenomics
project.

Interestingly, we noticed that the top predictive features
for each mark were often from embryonic stem cells or fetal
tissues, supporting the idea that DNA methylation change
in cancer represents a reversion to an embryonic-like state.
For example, H3K4me2 profiled in embryonic stem cells
(ESCs) was the top feature overall in our modified fea-
ture selection when also taking sample type into account.
H2A.Z in ESCs was also one of the top features overall.
Furthermore, H3K9me3 in fetal neutrophils was the most
predictive feature among the H3K9me3 features.

Next, we averaged promoter methylation changes within
a cancer type to produce consensus methylation change
values for each promoter for each cancer type and subse-
quently found that the epigenetic features could generally
explain the variance in these cancer consensuses much bet-
ter than for individual samples (Figure 2B, red diamonds),
likely reflecting the reduction in noise in the cancer consen-
suses compared to individual samples.

Due to both the large number of differentially methylated
promoters in tumours and the ability to explain much of
the variation in tumour methylation change with the epige-
netic features of normal cells and inspired by the MutSigCV
method of Lawrence et al. (30), we developed MethylDriver
(https://github.com/rheery/MethylDriver), a novel method

which accounts for this covariance to identify promoters
whose methylation change differs substantially from what
would be expected given their epigenetic profile in healthy
cells (Materials and Methods and Figure 1).

We found an increase compared to what would be ex-
pected by chance within the promoter neighbourhoods
in the mean number of paralogous gene pairs (median
of 4 pairs in the promoter neighbourhoods compared
to 2 pairs in randomly generated neighbourhoods; P-
value < 2.2 × 10–16). We also found a small but signifi-
cant mean pairwise GO semantic similarity of genes (me-
dian of 0.21) for promoter neighbourhoods compared to a
median of 0.20 for randomly generated neighbourhoods;
P-value = 2.7 × 10–14). We also found that many of the
identified promoter neighbourhoods exhibited an increased
tendency to reside on the same chromosome as their home
promoter (4988 neighbourhoods with P-value < 0.05 for
an upper-tailed binomial test) and that the promoters on
the home promoter’s chromosome tended to be closer than
would be expected by chance (Wilcoxon rank-sum test P-
value < 2.2e-16) with a median distance of 31 MB for the
neighbourhood promoters compared to 37 MB for ran-
domly selected promoters from the same chromosome.

To explore if the ability of epigenetic features in normal
cells to explain methylation change in cancer is specific to
promoters, we created random regions which did not over-
lap promoters but resembled promoters in terms of their
CpG density and investigated how well we could explain
their mean methylation change in three pairs of matched
tumour-normal prostate cancer samples with WGBS data
from the CPGEA project. We found that we could explain
a similar proportion of the variation (adjusted R2 of 0.45)
as with promoter methylation change and that marks like
H3K27me3, H3K4me1 and H3K27ac were also positively
correlated with methylation change in cancer in these ran-
dom regions.

The methylation changes at enhancers in cancer have re-
ceived much less attention than promoters, though they
are increasingly being implicated in carcinogenesis (48).
We investigated how much of the variation in mean en-
hancer methylation in the same three pairs of matched
tumour-normal prostate cancer samples we could explain
using the same set of epigenetic features as for the promot-
ers. We found that the corresponding multivariable linear
model had an adjusted R2 of 0.27, indicating that methy-
lation change at enhancers in cancer can also be partially
explained by the presence of epigenetic marks in normal
cells, though additional features which explain methylation
change at enhancers may remain to be identified.

Correcting for epigenetic covariates results in a smaller num-
ber of promoters with greater biological relevance of differ-
entially methylated genes

We applied MethylDriver to the promoter methylation
difference between matched tumour and normal samples
across 13 different cancer types. Several tools have pre-
viously been developed to determine differentially methy-
lated regions between cohorts or conditions but few of them
take genomic or epigenomic covariates of DNA methyla-
tion change into account and it is not clear which tools per-
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form best when it comes to detecting biologically relevant
DNA methylation changes in cancer.

We decided to compare the differentially methylated
genes identified by MethylDriver to five other tools: one
generic tool based on its superior performance in a bench-
marking study (49) (comb-p (27)) and four based on their
particular relevance to identify differentially methylated
genes in cancer (RESET (24), MethylMix (25) DNMIVD
(41) and MethSig (35)). RESET and MethylMix incorpo-
rate expression data as an additional filter criterion and
thereby control for the large number of otherwise differ-
entially methylated genes. DNMIVD uses a stringent cut-
off on the beta value fold change in addition to a sta-
tistical cutoff to control result set size. We also evalu-
ated the genes detected as significant by simply applying a
Wilcoxon rank-sum test, which is representative of the most
naive statistical attempt to detect differentially methylated
genes and which we henceforth refer to as the uncorrected
approach.

The different tools resulted in hugely differing numbers of
hypermethylated and hypomethylated genes, with both the
uncorrected approach and comb-p detecting several thou-
sand differentially methylated genes while other tools iden-
tified <100 genes per cancer type. MethylDriver identified
an average of ∼350 hypermethylated genes and an average
of ∼200 hypomethylated genes (Figure 3A and B). See Sup-
plementary Tables S4 and S5 for lists of hypermethylated
and hypomethylated genes identified by MethylDriver in
each TCGA cancer type studied.

MethylDriver should remove many false positive differ-
entially methylated drivers and result in increased biological
relevance of the identified differentially methylated genes.
Thus, we compared the overlap of differentially methylated
genes identified by MethylDriver and those identified by the
other tools and the uncorrected sets with three different cat-
egories of genes relevant to cancer: differentially expressed
genes, unexpressed genes and TSGs.

It should be expected that there is a high overlap of hy-
permethylated genes with downregulated genes and, like-
wise, for hypomethylated genes and upregulated genes. We
compared the numbers of downregulated genes that over-
lapped the sets of differentially methylated genes identi-
fied by MethylDriver and the other tools. Differentially
methylated genes identified by MethylDriver had a signif-
icant overlap with both downregulated genes (for hyperme-
thylated genes) and upregulated genes (for hypomethylated
genes), performing as well as or better than other tools in
most cancer types.

Conversely, it should be expected that there are low over-
laps with the reverse associations: hypermethylated genes
with upregulated genes and hypomethylated genes with
downregulated genes. We also compared these overlaps and
we saw lower overlaps than would be expected by chance
with the gene sets resulting from most tools (Supplemen-
tary Figure S3).

In a supporting analysis, given that the association of pro-
moter methylation values and expression of the correspond-
ing gene has been reported to vary widely (50), we investi-
gated the correlations between promoter methylation values
and TPM values of the corresponding genes separately in
different cancer types using tumour samples from TCGA.

There was a median correlation of -0.06 (Spearman’s rho)
between promoter methylation level and TPM values for
the corresponding gene, although there was large variation
in the correlation values, with some relatively strong neg-
ative correlations and even a small number of relatively
strong positive correlations (Supplementary Figure S4), fit-
ting with previous observations (50,51).

We next asked if the differentially methylated promot-
ers detected by MethylDriver displayed stronger associ-
ations between their methylation and transcriptional ex-
pression of the corresponding gene compared to the aver-
age associations for all promoters. We therefore compared
the distribution of methylation-TPM Spearman correla-
tions of the differentially methylated promoters detected
by MethylDriver to those of all promoters. We observed
a highly significant difference in the mean correlation val-
ues (P-value < 2.2e-16, lower-tailed Wilcoxon rank sum
test), with a median correlation value of -0.15 for the dif-
ferentially methylated promoters detected by MethylDriver,
more than twice as strong as the average association for all
promoters (Supplementary Figure S4). Furthermore, only
20% of the methylation-TPM correlations were under -0.2
for all promoters, while this proportion increased to over
40% for MethylDriver promoters.

As hypermethylation has been found to occur in tumours
even at the promoters of genes unexpressed or lowly ex-
pressed in the corresponding normal tissue (52–54), these
seemed like a good choice for false positives drivers for hy-
permethylated genes. As hypermethylation of gene promot-
ers is generally associated with transcriptional silencing,
there should be little biological consequence of methylating
a gene which is already unexpressed and thus they should be
underrepresented among epigenetic drivers in cancer. Thus,
we compared the overlap of hypermethylated genes identi-
fied by the different tools for each cancer type with genes
unexpressed in the corresponding normal tissue. We found
a statistically significant enrichment of unexpressed genes
among the uncorrected set for most cancer types and also
for comb-p, DNMIVD and MethSig (P < 0.05 with two-
sided Fisher’s exact test). In contrast, we observed a signifi-
cant depletion of unexpressed genes in MethylDriver hyper-
methylated genes for almost all cancer types (Figure 3E).

Since TSGs are well-established to be frequently silenced
by hypermethylation in cancer, they seemed an obvious
choice for true positives for hypermethylated genes (13–15).
We contrasted the overlap of hypermethylated genes from
the different tools with TSGs. With MethylDriver, there
was significant enrichment in TSGs for the hypermethylated
genes in the majority of cancer types (P-value < 0.05 with
Fisher’s exact test; Figure 3F). In contrast, there was no sig-
nificant enrichment in TSGs for all other tools in most can-
cer types.

With hypomethylated genes and oncogenes, there
was generally no enrichment for any tools, including
MethylDriver (Supplementary Figure S5), suggesting that
differential methylation in cancer tends to favour silencing
of TSGs rather than de-repression of oncogenes. Together,
the reduced overlaps with unexpressed genes and the
increased overlaps with TSGs strongly suggest greater
biological relevance of the corrected hypermethylated
genes.
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Figure 3. Correction for covariates increases the overlap with relevant gene sets and eliminates likely spurious associations. (A and B) Numbers of hyper-
methylated and hypomethylated genes of different tools. (C and D) Enrichment of downregulated genes among hypermethylated genes and enrichment of
upregulated genes among hypomethylated genes. (E) Enrichment of TSGs among hypermethylated genes. (F) Enrichment of unexpressed genes among hy-
permethylated genes. (G) Number of putative methylation driver events in samples across different cancer types. Significance calculated using Chi-squared
test (panesl C and D) or Fisher’s exact test (panels E and F): * indicates P-value < 0.05, ** P-value < 0.01 and *** P-value < 0.001.
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Given that different cancers are known to have different
number of commonly mutated driver genes (55), we were
curious if the number of putative methylation driver events
similarly varied with tumour site. We calculated the overlap
of putative methylation driver events detected when apply-
ing MethylDriver to individual samples within a cancer type
with those detected when using the methylation change con-
sensus. We found great variety within each tumour type, but
also noted that some cancers tend to acquire greater num-
bers of putative methylation driver events than others. Inter-
estingly PRAD has relatively few frequently mutated driver
genes (55), with SPOP being the only gene mutated in over
10% of samples (56), yet PRAD tends to acquire more puta-
tive methylation driver events than any other cancer (Figure
3G).

Functions of differentially methylated genes in cancer

After having established that the corrected sets of differen-
tially methylated genes appeared to display increased rele-
vance to cancer in terms of overlap with differentially ex-
pressed genes and TSGs, we sought to investigate which
roles these genes may be playing during tumorigeneis. GO
term enrichment analysis revealed distinct differences in the
terms that were most significant in the uncorrected and cor-
rected hypermethylated gene sets, with the most significant
uncorrected terms consisting of mostly nervous system- and
development-related GO terms (Figure 4). The enrichment
of developmental genes in the uncorrected gene sets likely
reflects the association between DNA methylation change
and H3K27me3, which plays a crucial role during develop-
ment, and hence the DNA methylation change in cancer for
many of these genes may just be a consequence of high levels
of H3K27me3 at their promoters.

To understand the impact of correcting for the epige-
netic covariates on the functional composition of differen-
tially methylated genes, we repeated the functional enrich-
ment analysis after running MethylDriver. The top terms
from the uncorrected set were composed of terms related
to metabolism, DNA replication and transcription factor
activity (Figure 4). For hypomethylated genes, the most en-
riched terms were related to immune system regulation for
both uncorrected and corrected sets (Supplementary Figure
S6).

We noticed that genes encoding chromatin modifiers
were often hypermethylated in several cancer types, in-
cluding the histone methyltransferases KMT2C (11 cancer
types) and NSD1 (7 cancer types) and the histone demethy-
lase KDM2B (6 cancer types). Indeed, the hypermethy-
lated genes from BLCA, KIRC, KIRP and THCA had
significant overlaps with the Reactome pathway chromatin
modifying enzymes (Fisher’s exact test, FDR-corrected P-
value < 0.05). Of particular interest were the hypermethyla-
tion of DNMT3A, a DNA methylation writer, in five cancer
types and TET2, a DNA methylation eraser, in four can-
cer types, suggesting a possible mechanism in which global
DNA methylation changes may be effected via hypermethy-
lation of these targets.

There were several chromatin modifiers also among the
hypomethylated genes, including the histone acetyltrans-
ferase NCOA1 in four cancer types, the histone deacetylase

HDAC9 in two cancer types, and the histone demethylases
KDM1A, KDM2A, KDM4A, KDM6B and the histone
methyltransferase KMT5C in one cancer type each.

Glutathione S-Transferase promoter methylation in prostate
cancer

We noted that terms related to glutathione metabolism (glu-
tathione peroxidase activity and glutathione binding, both
q-value < 0.1) were among the most significantly enriched
GO terms among the corrected hypermethylated genes in
prostate cancer (Supplementary Table S6), and also that
Glutathione S-transferase (GST) family members GSTM1,
GSTM2 and GSTP1 were among the corrected hyperme-
thylated genes in prostate cancer. As GSTs appear to protect
against DNA damage (57,58), we wondered if there is a re-
lationship between promoter methylation of GSTs and the
tumour mutation burden (TMB) in prostate cancer. Indeed,
we uncovered a clear association between promoter methy-
lation and overall TMB for GSTM2 and GSTP1 (Spear-
man’s � of 0.43 for both GSTM2 and GSTP1; Supple-
mentary Figure S7A and B) but not for GSTM1. Both
GSTM2 and GSTP1 promoters were among the top 1%
of promoters whose methylation is most strongly corre-
lated with TMB in prostate cancer (Supplementary Fig-
ure S7C) demonstrating that this association is specific for
these genes. Similarly, we also found strong correlations of
GSTM2 and GSTP1 promoter methylation with copy num-
ber alteration (CNA) burden in prostate cancer (Spearman’s
� of 0.53 for GSTM2 and 0.49 for GSTP1; Supplementary
Figure S7D and E), with both promoters among the pro-
moters whose methylation is most strongly associated with
CNA burden (Supplementary Figure S7F). Together these
observations suggest a general role for GSTM2 and GSTP1
in controlling genomic integrity, which is counter selected
in prostate cancer.

Implying a causal role for GSTM2 and GSTP1 promoter
methylation in increased TMB and CNA, promoter methy-
lation was observed to be anti-correlated with transcrip-
tional expression of both genes and in turn their transcrip-
tional expression was found to be anti-correlated with TMB
and CNA (Supplementary Figure S8). To establish a di-
rect link between GSTM1 and GSTM2 activity and tumor
growth rate, we tested if their promoter methylation status
is associated with the expression of the marker of prolif-
eration Ki-67. Indeed we identified a positive association
(Spearman’s � of 0.29 for GSTM2 and 0.28 for GSTP1;
Supplementary Figure S7G and H) and once again they
were among the promoters with the highest correlation val-
ues (Supplementary Figure S7I).

Thus, we reasoned that hypermethylation of GSTP1 and
GSTM2 may be associated with increased probability of
acquiring driver gene mutations in prostate. We tested the
top 10 most frequently mutated genes in PRAD and found
that both TP53 and FOXA1 displayed increased muta-
tion frequencies in the top quartile of samples ranked by
GSTP1 promoter methylation compared to the bottom
quartile (FOXA1 P-value = 0.0002; TP53 P-value = 0.026;
both Fisher’s exact test). We saw no association of GSTM2
methylation and mutation of individual genes.
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Figure 4. Functions of differentially methylated genes in cancer. Enriched GO terms in hypermethylated corrected and uncorrected genes. For each cancer
type, the top 10 most significant terms were selected (or all terms if there were ≤10 significant terms using a q-value cutoff of 0.1). Then the frequency
of these top-ranking terms were compared between corrected and uncorrected sets. Barplots display the top 10 most frequent terms for without and with
correction.

We then investigated the association of GSTP1 and
GSTM2 promoter methylation with the TMB and CNA
burdens and expression of the proliferation marker Ki-67
in all other cancer types from TCGA. We were surprised
to discover that GSTP1 methylation displays a unique pat-
tern in PRAD compared to all other cancers, with relatively
strong positive associations for all three, in contrast to most
other cancer types which display very weak or even negative
correlations, indicating that GSTP1 may play a unique role
in protecting the prostate from mutations (Figure 5).

Since a large number of matched normal-tumour samples
from Asian prostate cancer patients has recently been anal-
ysed with whole genome bisulfite sequencing (59) as part of
the CPGEA project, we were curious if GST family mem-
bers are also hypermethylated in this cohort, in addition
to the western TCGA cohort. We applied MethylDriver to
this dataset and found that both GSTM2 and GSTP1 were
again hypermethylated, with several glutathione-related
GO terms being over-represented (glutathione binding,
glutathione peroxidase activity and glutathione derivative
metabolic process; all q-value < 0.1). Thus, hypermethyla-
tion of GST gene promoters seems to be a universal feature
of prostate cancer.

Recurrence of hypermethylated genes across cancer types

We noticed that often genes are hypermethylated in sev-
eral cancer types and that after creating groups of hyperme-
thylated genes by the minimum number of cancer types in
which they are hypermethylated (e.g. genes that are hyper-

methylated in at least one cancer type, genes that are hyper-
methylated in at least two cancer types and so on) that the
overlap with TSGs increases with groups of genes methy-
lated in more cancer types (Figure 6A).

As already mentioned for DNA repair genes, distinct sets
of genes have been reported to be inactivated through mu-
tation and promoter hypermethylation. We noted that while
APC is only mutated in a substantial proportion of COAD
samples, it is significantly hypermethylated in COAD along
with several other cancer types (BLCA, BRCA, LIHC,
LUAD, PRAD and UCEC), being hypermethylated in 50%
of samples or more in several tumour types (Figure 6B). We
also made similar observations for numerous other TSGs,
particularly MLH1, TET2 and CDKN2A, with them often
being hypermethylated much more frequently than mutated
in numerous cancer types (Figure 6C). Thus, some tumours
seem to display preferences for inactivating certain genes
through promoter hypermethylation rather than mutation,
as has been previously described (60).

DISCUSSION

Systematic studies of cancer genomes have identified a va-
riety of mutated driver genes in the major cancer types (61–
63). Many studies have taken various approaches to achieve
something similar for differentially methylated genes in
cancer and have uncovered novel roles for differentially
methylated genes in tumorigenesis (24,32,64). These efforts
typically identified many promoters that display aberrant
methylation in a given tumour type, though the biological
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Figure 5. Correlation plots of GSTP1 (A) and GSTM2 (B) Promoter Methylation with TMB and CNA burden and Ki-67 expression. Colour indicates
Spearman correlation values.

relevance of most of their associated genes to cancer is un-
clear and many are altered in a manner largely predictable
from their epigenetic features in normal cells. Indeed, the
changes at many promoters seem to reflect the activation of
certain pre-programmed transcriptional and developmental
processes in cancer development (65) rather than the indi-
vidual role of their associated genes in tumorigenesis.

Recent approaches in cancer genomics take account of
covariates that locally alter mutation frequency, for exam-
ple chromatin accessibility (30,55). We are, to our knowl-
edge, the first to apply this concept to epigenetic alterations
by taking into account a diverse set of epigenetic covariates.
We developed a new computational tool, MethylDriver,
that can detect promoters displaying methylation changes
in cancer substantially different from the expected back-
ground given a promoter’s epigenetic properties in normal
cells and thus putatively causally involved in driving tumori-
genesis.

We applied MethylDriver to 13 different cancer types and
identified several hundred differentially methylated promot-
ers in each type, generally less than one-tenth of the num-
ber of promoters that have significant changes without tak-
ing account of their epigenetic background. Only a small
number (typically <10) of the dozens or even hundreds of
non-synonymous somatic mutations a solid tumour har-
bors are thought to be driver mutations (66). We noted a
similar pattern with DNA methylation events, with only
∼5% of differentially methylated genes in a cancer type
without correction identified as putative drivers after we
applied MethylDriver to individual samples in that cancer.
Moreover, we found that the number of putative epigenetic
driver events varies within and across tumour types, with
PRAD having a particularly large number of putative epi-
genetic driver events on average.

Rather than only removing false-positive DNA methy-
lation events, we would like to highlight that our method
also detects events which would not be deemed significant
with conventional statistical methods, such as the Wilcoxon
signed-rank test. This occurs when there is only a small
DNA methylation change between tumor and normal tis-

sue, when the variation in this change is large or when
there are only a small number of samples. On average,
10% of the differentially methylated promoters detected by
MethylDriver in a cancer are not present in the correspond-
ing uncorrected set. This reflects that MethylDriver can de-
tect small methylation changes which are actually relatively
large compared to the expected change given their epige-
netic background. This includes promoters for TSGs, such
as MLH1 and BRCA1, which in some cancer types were
significantly hypermethylated after using MethylDriver but
not by testing without correction.

Applying MethylDriver to several cancer types, we have
identified a wider role for TSGs in cancer than just in the
cancer types in which they are frequently mutated, with cer-
tain TSGs that are mutated specifically in a small number
of cancer types, like APC in colorectal cancer, being hyper-
methylated in many more. Additionally, we have uncovered
that putative epigenetic driver events, such as GSTP1 and
GSTM2 hypermethylation in prostate cancer, may influence
the acquisition of genetic driver events via their influence on
the tumour mutation load.

As the accumulation of deleterious mutations should ad-
versely impact the fitness of a tumour (67), we were in-
trigued why an increased mutation rate is apparently se-
lected for in prostate cancer via hypermethylation of GSTP1
and GSTM2. Indeed, CNA burden has been previously
shown to be a strong predictor of recurrence and survival in
prostate cancer (68,69) implicating methylation of GSTM2
and GSTP1 in the prognosis of prostate cancer patients via
allowing for higher amount of genomic aberrations. The
selection towards silencing genes involved in maintaining
genome integrity may be partially explained by the relatively
low mutation rate of prostate cancer compared to other can-
cers (30) and the small number of driver genes mutated fre-
quently in prostate cancer (56). Thus, selection may favour
an increased mutation rate in prostate cancer to increase
the chances of inactivating one of the few prostate-specific
driver genes.

There are most certainly other factors contributing to
promoter methylation change in cancer besides those that
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Figure 6. Hypermethylation of some TSGs is recurrent across different cancer types. (A) Overlap with TSGs increases in genes hypermethylated in a
greater number of cancer types. Selected TSGs hypermethylated in the different numbers of cancer types are shown. (B) Comparison of the proportion of
samples where APC is mutated and hypermethylated. (C) Frequency of hypermethylation compared to frequency of mutation of the top 10 most frequently
methylated TSGs in each cancer type.
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we have identified, both in a general and tissue-specific man-
ner, and their incorporation could lead to further improve-
ment in our approach.

In summary, the correction for epigenetic covariates leads
to identification of a set of differentially methylated puta-
tive cancer driver genes that potentially play diverse roles in
tumour biology. Experimental validation of targets should
be performed to definitively prove the biological role of
identified genes in tumorigenesis. It also highlights an im-
portant link between accumulation of epigenetic changes
and genomic mutations: in prostate cancer the silencing by
DNA methylation of particular genes might make tumor
cells more permissive for acquiring mutations. Finally, our
work demonstrates a far more cancer type-general role for
several tumor suppressors that previously have been asso-
ciated with a small number of cancer types only. Taken to-
gether, this study expands our understanding of the epige-
netic contribution to carcinogenesis.

DATA AVAILABILITY

MethylDriver is available at https://github.com/rheery/
MethylDriver.

All data from TCGA is available from GDC
(https://portal.gdc.cancer.gov/repository) and the Asian
prostate cancer WGBS data from CPGEA (https://wangftp.
wustl.edu/~hlee/SMMU/PC/WGBS bedGraph/). For the
analyses where we used only three samples from CPGEA,
we used the tumour samples T1, T6 and T10 and their
matching normal samples. The Roadmap Epigenomics data
are available from https://egg2.wustl.edu/roadmap/data/
byFileType/signal/consolidated/macs2signal/foldChange/.
Transcription start sites for promoters were obtained
from EPD (ftp://ccg.epfl.ch/epdnew/H sapiens/006/
Hs EPDnew 006 hg19.bed).
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