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Abstract 

Background: Codon usage and nucleotide composition of coding sequences have 
profound effects on protein expression. However, while it is recognized that different 
tissues have distinct tRNA profiles and codon usages in their transcriptomes, the effect 
of tissue‑specific codon optimality on protein synthesis remains elusive.

Results: We leverage existing state‑of‑the‑art transcriptomics and proteomics data‑
sets from the GTEx project and the Human Protein Atlas to compute the protein‑to‑
mRNA ratios of 36 human tissues. Using this as a proxy of translational efficiency, we 
build a machine learning model that identifies codons enriched or depleted in specific 
tissues. We detect two clusters of tissues with an opposite pattern of codon prefer‑
ences. We then use these identified patterns for the development of CUSTOM, a codon 
optimizer algorithm which suggests a synonymous codon design in order to optimize 
protein production in a tissue‑specific manner. In human cell‑line models, we provide 
evidence that codon optimization should take into account particularities of the trans‑
lational machinery of the tissues in which the target proteins are expressed and that 
our approach can design genes with tissue‑optimized expression profiles.

Conclusions: We provide proof‑of‑concept evidence that codon preferences exist 
in tissue‑specific protein synthesis and demonstrate its application to synthetic gene 
design. We show that CUSTOM can be of benefit in biological and biotechnological 
applications, such as in the design of tissue‑targeted therapies and vaccines.

Keywords: Tissue, Codon optimization, Gene design, Translation, Proteomics, 
Transcriptomics

Background
From the advent of synthetic biology, it is widely recognized that gene design needs to 
be adapted to the expression requirements of the host [1]. Within coding sequences, 
there are manifold overlapping factors that determine translation, mRNA stability, 
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transcription, splicing, methylation, or ribosomal frameshifting, among others [2]. 
Therefore, while the amino acid sequence of proteins is maintained, the usage of synony-
mous codons can be optimized for heterologous expression.

During the last decades, an extensive number of computational tools have been devel-
oped for gene design [3, 4]. Most commonly, these tools optimize the codon usage in 
order to resemble that of the host based on the Codon Adaptation Index (CAI) of the 
genes to be optimized or similar metrics. Other more innovative developments also 
include neural networks that control translation speed [5] or other machine learn-
ing algorithms that optimize mRNA stability [6]. Although there is no absolute “best” 
approach, codon optimization is commonly and successfully applied in gene design. 
In fact, current knowledge on the effect of synonymous variants on the heterologous 
expression of the protein GFP shows up to 46-fold expression differences in HeLa cells 
[7]. Similarly, mRNA and protein levels across thousands of GFP variants strongly cor-
related with their CAI in S. cerevisiae [8].

Nevertheless, codon optimization in multicellular eukaryotes is more intricately deter-
mined, since different tissues can showcase differences in codon usage and tRNA expres-
sion [9–11]. The translational efficiency, which constitutes the rate of protein production 
from mRNA, is therefore dependent on the balance between the codon usage of genes 
being translated and the abundance of a limited tRNA pool [10, 12]. In this context, 
codons translated by highly abundant tRNAs generally correspond to optimal codons 
in the translatome, as has been reported by ribosome profiling [13]. However, detecting 
differences of translational efficiency between tissues can be challenging, since the larger 
gene-to-gene variability of protein levels can obscure the actual tissue-to-tissue differ-
ences [14].

The advent of high-throughput sequencing has enabled an extensive transcriptome 
profiling of human tissues [15, 16]. Based on the mRNA-seq data from the GTEx pro-
ject, Kames et  al. (2020) developed the public resource TissueCoCoPUTs, contain-
ing codon and codon pair usage tables of tissue transcriptomes [11]. However, current 
knowledge indicates that tissue-specific variability of gene expression is mostly regulated 
at the post-transcriptional level and mRNA-seq alone is therefore not able to capture 
it [17, 18]. Developments in mass spectrometry have very recently led to the release of 
deep and quantitative proteome maps of human tissues [19, 20].

Using this transcriptomic and proteomic data from the Human Protein Atlas and the 
GTEx project, we here compute the protein-to-mRNA (PTR) ratios of 36 human tissues 
as a proxy for translational efficiency. To distinguish high-PTR from low-PTR proteins, 
we build random forest models that identify which codons are optimal or non-optimal 
for each tissue. Then, we apply these codon preferences to develop a tool, CUSTOM 
(Codon Usage to Specific Tissue OptiMizer), that optimizes coding sequences for a 
specific tissue. CUSTOM is publicly available as a Python package (https:// github. com/ 
hexav ier/ CUSTOM) and as a web interface (https:// custom. crg. eu). By optimizing eGFP 
and mCherry proteins to a human cell model of kidney and lung, we provide experimen-
tal evidence of how tissue codon optimization could be important, e.g., in vaccines or 
gene therapy.

https://github.com/hexavier/CUSTOM
https://github.com/hexavier/CUSTOM
https://custom.crg.eu
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Results
Protein‑to‑mRNA ratios detect differences in translational efficiency among tissues

Translational efficiency (TE) is defined as the rate of protein synthesis from mRNAs, 
which can be approximately estimated as the protein-to-mRNA (PTR) ratio. To sys-
tematically analyze the PTR ratios across a total of 36 human tissues, we retrieved the 
mRNA-seq and proteomics data from two recent datasets: 29 tissues from the Human 
Protein Atlas [17, 20] (HPA) and 24 tissues from the GTEx project [19] (Fig.  1A, B, 
Additional file 2). The first study includes one sample per tissue, which are concurrently 
analyzed by mRNA-seq and label-free iBAQ proteomics. On the latter, a total of 182 

Fig. 1 Protein‑to‑mRNA ratios detect differences in translational efficiency among tissues. A Proteomics 
and mRNA‑seq data included in this study contains samples from the GTEx project [19] and Human Protein 
Atlas [20]. B Using these datasets, we compute the protein‑to‑mRNA ratios (PTR) and define tissue‑enriched 
and tissue‑depleted sets of proteins for each tissue. By comparing the codon usage of these two sets, we 
identify the codon optimality pattern of tissues. Using this information, we develop a gene design tool called 
CUSTOM and validate the method using an in vitro cellular model. C Spearman correlation between the 
median translational efficiency [21] (ratio between ribo‑seq and mRNA‑seq FPKMs) and PTR [20] across genes 
in the brain, liver, and testis. The color code depicts the density of points in the scatter plot



Page 4 of 20Hernandez‑Alias et al. Genome Biology           (2023) 24:34 

matched samples are measured both by mRNA-seq and tandem mass tag 10plex/MS3 
mass spectrometry. By correlating the mRNA expression, protein abundance and PTR 
ratios along the 17 tissues in common, we could ascertain a significant correspondence 
between the two datasets (Additional file 1: Fig. S1A).

Although to date this data is still relatively rare, a more direct readout of TE is the ratio 
between ribosome profiling and mRNA abundance. To confirm the validity of using PTR 
ratios as an estimate of TE, we therefore compared the PTR values to a ribosome profil-
ing dataset of the brain, liver, and testis. In all of them, we observed a significantly posi-
tive correlation across the human genome [21] (Fig. 1C, Additional file 2).

We next set out to investigate the tissue-to-tissue differences of PTR ratios in the 
aforementioned datasets. For each tissue, we defined a set of high-PTR and a set of low-
PTR genes, described as having a PTR fold change compared to the average of all other 
tissues larger than 2, and vice versa (see Methods, Additional file  2). We found a sig-
nificant concordance between the gene sets derived from the HPA and GTEx datasets in 
most tissues (p < 0.05, one-tailed binomial test, Additional file 2). In particular, 16/17 tis-
sues were significantly concordant at the mRNA level, 15/17 at the proteomic level, and 
9/17 at the PTR level; only colon tissue was disagreeing at all levels.

To physiologically interpret the differences between gene sets, we performed an 
enrichment map among high-PTR and low-PTR sets linking tissues with high overlap of 
the respective gene sets (Additional file 1: Fig. S1B). In agreement with their highly tis-
sue-specific function, we detected that tissues group according to their role in the body: 
e.g., nervous tissue (brain and tibial nerve), muscular tissue (skeletal muscle and heart). 
Moreover, GO analyses of high-PTR genes showed significant enrichments for highly 
tissue-specific biological processes according to the physiological and anatomical func-
tion of the tissue (p < 0.05, Fisher’s exact test, Additional file 1: Fig. S1C).

We next asked if there could be any confounding factors associated with these gene 
sets, such as protein secretion and protein or mRNA degradation, that could bias our 
analyses. First, it was recently reported that constitutively secreted proteins are often 
detected at the mRNA but not at the protein level [19], which could bias PTR ratios as 
a measure of TE. While we also observed these differences in our dataset (Additional 
file 1: Fig. S2A), the exclusion of secreted proteins from our gene sets did not affect the 
downstream results (see following section). Second, we analyzed the protein half-life of 
gene sets based on two recent datasets in five human cell lines [22, 23] (Additional file 2). 
The protein half-life was not significantly different between high-PTR and low-PTR gene 
sets in most of the tissues (p < 0.05, two-tailed Wilcoxon rank-sum test), nor was there 
any trend that one of the groups would be consistently associated with higher or lower 
half-life (Additional file  1: Fig. S2B). Similarly, no consistent association with mRNA 
degradation was detected using the mRNA half-life measurements of three different cell 
lines [24–26] either (Additional file 1: Fig. S2C, Additional file 2).

Taken together, these observations indicate that PTR ratios can efficiently detect tis-
sue-specific differences in translation. As such, it constitutes an appropriate dataset to 
systematically study TE differences across the set of 36 human tissues.
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Random forest models identify two clusters of human tissues with distinct codon 

signatures

Recent studies show that different tissues can have different tRNA repertoires and codon 
usage [10, 11], which could have an influence on translational efficiency. Therefore, we 
wondered whether high-PTR and low-PTR sets of genes were specifically enriched or 
depleted of certain codons. If there is a tissue-specific codon signature, we would expect 
to be able to predict these differences in PTR.

To that aim, we built a random forest classifier for each tissue that predicts the 
high-PTR vs low-PTR state of genes based on their codon usage. All 36 resulting 
models performed with an area under the curve (AUC) of their receiver operating 
characteristic (ROC) curves higher than the no-skill model of 0.5 (Fig. 2A, Additional 

Fig. 2 Random Forest models identify two clusters of human tissues with distinct codon signatures. A 
Receiver operating characteristic (ROC) curves of lung and kidney random forest classifiers, in which the 
codon usage of genes is used to predict whether they are high‑PTR or low‑PTR in the respective tissue (see 
the “Methods” section). B Ratios of the codon usage between high‑PTR and low‑PTR genes in each tissue. 
Codons and tissues are hierarchically clustered using Euclidean distances and the complete‑linkage method. 
The barplot on the left shows the mean AUC of the ROC curve of the RF model of each tissue
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file  3). In particular, kidney, breast, lung, rectum, and tonsil showcased the highest 
tissue-specific profiles (Fig.  2A; all AUC > 0.70). Furthermore, to validate whether 
these differences in PTR were specifically dependent on codon usage and not from 
nucleotide composition alone, we compared them with the performance of three con-
trol models: +1 and +2 misframed codon usage as well as dinucleotide composition 
of genes (Additional file 3). While these control models also showed predictive power, 
the AUC of the correctly framed codon usage models significantly outperformed the 
controls (p < 0.05, one-tailed binomial test).

To examine the tissue-specificity of codons, we next analyzed which particular 
codons were predictive for high vs low PTR states in each tissue. The relative feature 
importances of each random forest classifier measure the contribution of codons in 
the decision trees (Additional file  1: Fig. S3A). In general, only a few codons (5 to 
10) were relevant for each model, but they differed across tissues. A recursive feature 
elimination of each model similarly substantiated that fewer than 10 codons were suf-
ficient to achieve the maximum AUC performance (Additional file 1: Fig. S3B).

In addition, by computing the ratio between the codon usage of high-PTR vs low-
PTR genes, we observed the enrichment or depletion of codons in specific tissues 
(Fig.  2B). There were two main clusters of tissues with opposite codon optimality 
profiles: the first generally preferring A/T-ending codons while the second favoring 
C/G-ending ones. In agreement with studies showing that the A/T-vs-G/C pattern 
is associated with proliferation [10, 27], we also detected that the A/T-ending cluster 
was significantly more proliferative than G/C-ending one, based on the proliferation 
marker Ki67 [28] (Additional file 1: Fig. S3C). Also, as expected, tissues with higher 
AUC performances showcased more definite codon profile patterns both in terms of 
their enrichment/depletion (Fig.  2B) as well as their importance (Additional file  1: 
Fig. S3A). As mentioned in the previous section, we also repeated the same analyses 
with the secretome-excluded sets of genes, which had a highly similar codon optimal-
ity profile with all correlations of codon ratios over 0.95 (Additional file 3).

To further assess the concordance between GTEx and HPA datasets, we also repro-
duced the same analyses with the high-PTR vs low-PTR sets of each dataset separately 
(Additional file 2). With few differences, both datasets showed a similar A/T-ending 
vs G/C-ending signature across tissues (Additional file  1: Fig. S4, Additional file  3). 
Moreover, to disentangle the codon effects on mRNA and protein levels separately, we 
constructed a similar model using tissue-specific sets from either mRNA-seq or pro-
teomic measurements alone (Additional file 2). As expected, since PTRs are defined 
as protein divided by transcript abundance, we observed an inverted codon signature 
related to mRNAs (Additional file  1: Fig. S5A, Additional file  3). Conversely, prot-
eomics data alone led to a similar but less pronounced codon pattern as compared to 
PTRs (Additional file 1: Fig. S5B, Additional file 3), indicating that both mRNAs and 
proteins contribute to the observed PTR differences.

Given that some reports highlight the role of codon pair bias in translation [11, 
29], we similarly analyzed the codon pair usage ratios between high-PTR vs low-
PTR genes (Additional file 4). A principal component analysis (PCA) of these ratios 
perfectly separated the exact same two clusters observed above with single codons 
alone (Additional file 1: Fig. S6A). To further analyze how much codon pair variance 
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was explained by single codons alone, we compared observed codon pair ratios with 
their expected values based on their constituent single codons. They related highly 
linearly as shown by linear regression models (Additional file 1: Fig. S6B, Additional 
file 4), which indicates that differences in codon pair ratios can be explained by single 
codons alone. In fact, codon pairs that deviated the most from linearity just corre-
sponded to outliers with very low counts within gene sets (Additional file 1: Fig. S6C).

Overall, our random forest classifiers can predict the PTR of genes in a certain tissue 
based on their codon usage. As such, the observed differences in codon preference or 
avoidance across tissues can be exploited to optimize tissue-specific gene design.

CUSTOM generates fluorescent variants with desired tissue‑specific expression

To translate differences in tissue-specific PTR into a codon optimizer tool, we developed 
CUSTOM as a probabilistic approach (see Methods, https:// custom. crg. eu). Given a 
certain amino acid sequence and a target tissue, codons are selected with a probability 
proportional to their tissue importance in the model (Additional file 1: Fig. S3A). Then, 
based on the ratio of the selected codon (Fig. 2B), it is either added or avoided in the 
generated sequence. This process is performed along the whole sequence and repeated 
iteratively to generate a pool of hundreds of optimized sequences. Among this pool of 
sequences, given that tissue-specific codon usage is not the only factor influencing cod-
ing sequences [2], the top scoring ones can be selected based on other commonly used 
parameters of codon bias or mRNA stability [4] (Codon Adaptation Index, Codon Pair 
Bias, Minimum Free Energy, Effective Number of Codons, see the “Methods” section).

To validate the predictor, we chose the proteins eGFP and mCherry, and optimized 
them with CUSTOM to either kidney or lung (Additional file  5). Taking eight among 
the top optimized sequences (Fig.  3A, 2x  eGFPKidney, 2x  eGFPLung, 2x  mCherryKidney, 
2x  mCherryLung), we then designed four constructs, placing in each of them one eGFP 
and one mCherry optimized each one for a different tissue and under an inducible bidi-
rectional promoter (Fig.  3B,  mCLeGK1,  mCLeGK2,  mCKeGL1,  mCKeGL2). These con-
structs were then simultaneously expressed in the lung and kidney cell lines A549 and 
HEK293T, respectively. Based on available proteomics data of these cell lines [30], both 
the proteome and codon usage of A549 clearly resembled that of lung, while HEK293T 
was a closer model to kidney (Additional file 1: Fig. S7A-D).

We then analyzed the eGFP and mCherry fluorescence of each construct in each 
cell line by flow cytometry (Additional file  6). For all cases, we observed that the 
eGFP/mCherry ratio was significantly higher in the tissue for which eGFP was opti-
mized (Fig.  3C, p < 0.05, two-tailed Wilcoxon rank-sum test), which validated our 
tissue-specificity hypothesis. Moreover, while the efficiency of transfection was 
extremely variable between replicates, cell lines, and constructs, we detected con-
sistent significant differences in all three replicates (Additional file  1: Fig. S7E). 
Quantification of eGFP and mCherry by targeted proteomics showed the same 
tissue-specific pattern (Additional file  1: Fig. S8A-B, Additional file  5). We fur-
ther observed that (1) the two constructs with  eGFPLung had generally lower eGFP/
mCherry ratios compared to the ones with  eGFPKidney, and (2) the differences in 
eGFP/mCherry ratios between constructs were more variable in HEK293T than 

https://custom.crg.eu
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A549 cells (Fig.  3C, right panel). Altogether, these observations suggest that A/T-
ending codons are generally lower expressed than C/G-ending counterparts, but tis-
sues like lung tolerate them better (Fig. 3D, Additional file 1: Fig. S8B). Furthermore, 
to confirm that observed changes arise from differences in mRNA translation rather 
than at the transcript level, we quantified eGFP and mCherry transcript abundances 
by RT-qPCR (Additional file  5). In agreement, measured mRNA ratios inversely 
corresponded with protein ratios for three of the constructs (Additional file 1: Fig. 
S8C), which concurs with the previously observed mRNA model (Additional file 1: 
Fig. S5A).

As A549 is a cancer cell line and HEK293T is of adrenal origin [31], we sought to 
validate the construct expression in a more physiological model of tissue primary 
cells. The same tissue-specific pattern was consistently observed for all constructs 
except  mCKeGL1 (where differences were less evident), both by flow cytometry 
(Fig.  3E, Additional file  7) and targeted proteomics (Additional file  1: Fig. S8D-E, 

Fig. 3 CUSTOM generates fluorescent variants with desired tissue‑specific expression. A Selected eGFP 
and mCherry sequences optimized to lung and kidney using CUSTOM. The color code corresponds to the 
optimality ratios of Fig. 2B. B Using these sequences, we designed four of constructs by placing a mCherry 
and an eGFP with opposite tissue‑specificity under an inducible bidirectional promoter. C Ratios of eGFP 
and mCherry for each of the four constructs in A549 and HEK293T cell lines, detected by flow cytometry. 
Three biological replicates are downsampled to 1000 cells per group and summed; see individual replicates 
in Additional file 1: Fig. S7E. On the right, the distribution of all four constructs together are shown. D 
Conceptual summary of the relationship between the gene codon usage and their expression across tissues. 
E Ratios of eGFP and mCherry for each of the four constructs in primary cells, detected by flow cytometry. 
Top and bottom panels correspond to two independent batches of primary cells (see the “Methods” section). 
The number of cells within each group is specified. Center values represent the median. Statistical differences 
were determined by two‑tailed Wilcoxon rank‑sum test and are denoted as follows: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001, ****p ≤ 0.0001
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Additional file 5). Altogether, the results reported in this section validate our PTR-
derived models and provide proof-of-principle experimental evidence for tissue-
specific codon optimization using CUSTOM.

Discussion
Current analyses of the mRNA and protein levels among human tissues distinguish 
between across-gene and within-gene (i.e., across-tissue) variability [14]. In fact, the 
coefficient of variation of mRNA and protein levels across genes highly exceeds that of 
across tissues. In consequence, studies of codon usage on human transcriptomes and 
PTR ratios so far were dominated by the across-gene variability and thus overlooked the 
smaller across-tissue differences [11, 17]. The approach taken here puts the focus on the 
across-tissue variability of PTR ratios rather than the overall genome, which is actually 
the major source of post-transcriptional regulation [17, 18]. In fact, we provide evidence 
that high-PTR gene sets of tissues are particularly enriched for tissue-specific functions.

Given the high GC content of the human genome as a whole, G/C-ending codons 
are generally more abundant (i.e., higher CAI) and relate to higher mRNA and protein 
expression levels [7, 32, 33]. But again, moving away from this across-gene perspective 
of human codon usage to look at the across-tissue variation, we here report that distinct 
tissues showcase different codon preferences. All in all, as also determined experimen-
tally, we observe that the expression of a certain protein is dependent on two axes: (1) 
the across-gene axis with G/C-ending codons favoring higher absolute expression and 
(2) the tissue-specific axis with the codon preferences observed in Fig. 2B. Moreover, we 
also report that some tissues have a more definite codon profile than others, where this 
second axis is less evident. In agreement with our observed tissue-specific axis, Allen 
et al. (2022) recently reported that testis and brain (in contrast to other tissues such as 
ovary) better tolerate the translation of rare A/T-ending codons in Drosophila mela-
nogaster [34].

The codon optimization tool CUSTOM is able to exploit these codon preferences for 
the design of tissue-targeted genes. In fact, the designed constructs expressed in kidney 
and lung cell lines and primary cells showed the predicted tissue-specificity. To make 
CUSTOM readily available to the community, we developed it completely open source 
and made it accessible through a web server.

Human tissues are ensembles of heterogeneous cell types and therefore observed dif-
ferences in codon optimality are actually a composition of the constituent cell types. 
However, single-cell technologies of mRNA and protein measurements fall still far from 
complete cellular atlases [35]. Instead, we used the most up-to-date and complete tissue-
wide maps of the human transcriptome and proteome, which have been generated by 
cutting-edge mass spectrometry and mRNA sequencing techniques [15, 19, 20]. Moreo-
ver, while PTRs positively correlated with TE and results were not confounded by factors 
such as secretion or mRNA and protein degradation, more direct readouts of TE will be 
possible as more ribosome profiling datasets of human tissues become available.
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Conclusions
The results presented here constitute a proof-of-concept that tissue-specific codon 
usage exists and can be applied to gene design. In particular, this tool could be used in 
the development of optimized gene therapies or mRNA vaccines with more defined tis-
sue targets and therefore potentially less side effects. Nevertheless, factors other than 
codon usage also play a role in gene expression [2], and therefore changes in synony-
mous codons can as well interfere with other processes such as mRNA folding and sta-
bility, mRNA modifications, protein folding, or translational kinetics [36, 37]. As such, 
tissue-specific codon usage will constitute one additional instrument in the gene design 
tool set.

Methods
Codon optimizer for tissue‑specific expression

CUSTOM is implemented in Python (version > = 3.7) and available on GitHub (https:// 
github. com/ hexav ier/ CUSTOM) and as a web interface (https:// custom. crg. eu). The 
landscape of possible synonymous sequences is vast and manifold factors overlap in 
defining the code. Therefore, we follow a simple probabilistic approach with two steps: 
(1) translate tissue-specific codon preferences into a pool of optimal sequences and (2) 
select the desired sequence based on other parameters of relevance.

Creating a pool of tissue‑optimized sequences

The algorithm requires two main input data: the amino acid sequence to be optimized 
(or DNA sequence) and the target tissue. For each iteration of the optimization, the 
sequence is optimized taking two factors into account: how important the codon is in 
defining tissue-specificity (relative feature weights in Additional file  1: Fig. S3A) and 
whether it is enriched or depleted in the tissue (codon ratios in Fig. 2B). Therefore, for 
each amino acid, a certain codon is selected with a probability proportional to the first. 
If the selected codon is enriched in the tissue, it is incorporated into the sequence. If it is 
depleted, the codon is excluded and another codon is selected based on the same prob-
abilities as before. This process is repeated along the full sequence and for as many itera-
tions as desired. Furthermore, given that 5–10 top codons are often sufficient to achieve 
the full AUC prediction (Additional file 1: Fig. S3B), users can also control whether opti-
mizing all codons or only the top ones.

Selecting the top scoring candidates

Once a pool of optimized sequences has been generated, the best-ranked ones can be 
selected as the user desires. Given that no ground truth is known, the default select_
best method of the package measures a list of standard metrics frequently used in gene 
design and computes an average to select the top scoring sequences. The following fac-
tors can be included:

• Minimum Free Energy (MFE): a measure of mRNA stability from the ViennaRNA 
package [38]. CUSTOM distinguishes between the first 40 nucleotides (whose weak 

https://github.com/hexavier/CUSTOM
https://github.com/hexavier/CUSTOM
https://custom.crg.eu


Page 11 of 20Hernandez‑Alias et al. Genome Biology           (2023) 24:34  

secondary structure leads to increased translation initiation) and the rest of the 
sequence (whose strong secondary structure relates to longer mRNA half-lives) [4]

• Codon Adaptation Index (CAI): a measure of similarity between the codon usage of 
the sequence and that of the human genome [39]

• Codon Pair Bias (CPB): a measure of similarity between the codon pair usage of the 
sequence and that of the human genome [29]

• Effective Number of Codons (ENC): a measure of codon evenness. A value of 20 
means that all 100% codons are biased towards the most common codon, while 61 
corresponds to no bias at all [40]

• GC content: a measure of similarity between the sequence GC content and a desired 
target value of GC

• Homopolymers: filters out sequences with homopolymers of a certain length, which 
can lead to worse expression

• Motifs: filters out sequences containing certain motifs

Experimental model and protocol

Human cell models

The cell lines included in this study are HEK293T and A549. The sex of each cell line is 
as follows: HEK293T, female; A549, male. Cells were maintained at 37 °C in a humidi-
fied atmosphere at 5%  CO2 in DMEM 4.5 g/l Glucose with UltraGlutamine media sup-
plemented with 10% of FBS and 1% penicillin/streptomycin. Primary epithelial cells 
were obtained from Lonza. Both renal (Lonza, cat # CC-2556) and small airway (Lonza, 
cat # CC-2547) cells were grown at 37  °C in the corresponding growth media (Lonza, 
cat # CC-3190 and CC-3118). Two independent batches of primary cells were used 
for each cell type. Small airway cells were obtained from two female donors (batch #1: 
18TL082942, 68 years; batch #2: 18TL179344, 25 years), and renal cells were obtained 
from a male donor (batch #1 and #2: 19TL036410).

Expression vectors design

We applied CUSTOM to the protein sequences of eGFP and mCherry (Uniprot ID: 
C5MKY7, X5DSL3). Sequences were optimized to either lung or kidney, generating a 
total of n_pool = 1000. Sequences with homopolymers equal or larger than 7 were fil-
tered out and scored with:

Among the top 10 scoring candidates of each optimization, we selected 2x  eGFPKidney, 2x 
 eGFPLung, 2x  mCherryKidney, and 2x  mCherryLung (Additional file 5).

For gene overexpression experiments, the two selected eGFP and and mCherry were 
cloned into a modified version of the XLone-GFP vector (Addgene, cat # 96930). The 
modification consisted of replacing the promoter of XLone-GFP with a bidirectional 
TRE3G promoter (Clontech), which allows the simultaneous expression of both genes. 
The four constructs consisted in a combination of  eGFPLung +  mCherryKidney and 
 eGFPKidney +  mCherryLung.

opt.select_best
(

by =
{

��MFE��
∶

��min��, ��MFEini�� ∶ ��max��, ��CAI �� ∶ ��max��, ��CPB��
∶

��max��, ��ENC ��
∶

��min��
}

,

homopolymers = 7, top = 10
)
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Flow cytometry

HEK293T and A549 cells were seeded in 6-well plates in technical triplicates for each 
condition and biological replicate. Expression vectors were transfected with Lipo-
fectamine 3000 (Invitrogen). Similarly, primary renal and small airway cells were seeded 
in 6-well plates in technical triplicates for each condition and biological replicate and 
expression vectors were transfected using TransfeX (ATCC). Gene expression was 
induced with 500 ng/mL of doxycycline during 48 h. To measure the expression of the 
fluorescent proteins, cells were trypsinized and resuspended with 500 μL of media. Sam-
ples were applied on a FACS Fortessa analyzer. Approximately  104 live single-cell events 
were collected per sample. BD FACSDiva software was used for gating and analysis. The 
fluorescence intensity for each population in the FITC channel and PE–Texas Red chan-
nel was obtained.

Targeted proteomics

HEK293T and A549 cells were seeded in 6-well plates. Expression vectors were trans-
fected with Lipofectamine 3000 (Invitrogen). Similarly, primary renal and small airway 
cells were seeded in 6-well plates and expression vectors were transfected using Trans-
feX (ATCC). Gene expression was induced with 500 ng/mL of doxycycline during 48h. 
To measure the expression of the fluorescent proteins, cells were washed twice with PBS 
and resuspended in 6M Urea/200mM ABC buffer.

Sample preparation Samples (10 μg) were reduced with dithiothreitol (30 nmol, 37 
°C, 60 min) and alkylated in the dark with iodoacetamide (60 nmol, 25 °C, 30 min). The 
resulting protein extract was first diluted to 2M urea with 200 mM ammonium bicarbo-
nate for digestion with endoproteinase LysC (1:10 w:w, 37°C, 6h, Wako, cat # 129-02541) 
and then diluted 2-fold with 200 mM ammonium bicarbonate for trypsin digestion (1:10 
w:w, 37°C, o/n, Promega, cat # V5113).
After digestion, peptide mix was acidified with formic acid and desalted with a Micro-
Spin C18 column (The Nest Group, Inc) prior to LC-MS/MS analysis.

Chromatographic and mass spectrometric analysis Samples were analyzed using an 
Orbitrap Lumos (Thermo Fisher Scientific) coupled to an EASY-nanoLC 1200 UPLC 
system (Thermo Fisher Scientific). Peptides were loaded directly onto the analytical col-
umn and were separated by reversed-phase chromatography using a 50-cm column with 
an inner diameter of 75 μm, packed with 2 μm C18 particles spectrometer (Thermo Sci-
entific, San Jose, CA, USA).
Chromatographic gradients started at 95% buffer A and 5% buffer B with a flow rate of 
300 nl/min for 5 minutes and gradually increased to 25% buffer B and 75% A in 79 min 
and then to 40% buffer B and 60% A in 11 min. After each analysis, the column was 
washed for 10 min with 10% buffer A and 90% buffer B. Buffer A: 0.1% formic acid in 
water. Buffer B: 0.1% formic acid in 80% acetonitrile.

The mass spectrometer was operated in positive ionization mode with an EASY-Spray 
nanosource at 2.4kV and at a source temperature of 305 °C.
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Library data The acquisition was performed in data-dependent acquisition (DDA) 
mode and full MS scans with 1 micro scans at resolution of 120,000 were used over 
a mass range of m/z 350-1400 with detection in the Orbitrap mass analyzer. Auto 
gain control (AGC) was set to “standard” and injection time to “auto.” In each cycle 
of data-dependent acquisition analysis, following each survey scan, the most intense 
ions above a threshold ion count of 10000 were selected for fragmentation. The 
number of selected precursor ions for fragmentation was determined by the “Top 
Speed” acquisition algorithm and a dynamic exclusion of 60 s. Fragment ion spectra 
were produced via high-energy collision dissociation (HCD) at normalized collision 
energy of 28%, and they were acquired in the ion trap mass analyzer. AGC was set 
to 2E4, and an isolation window of 0.7 m/z and a maximum injection time of 12 ms 
were used.
Digested bovine serum albumin (New England Biolabs, cat # P8108S) was analyzed 
between each sample to avoid sample carryover and to assure stability of the instrument 
and QCloud [41] has been used to control instrument longitudinal performance during 
the project.

Acquired spectra were analyzed using the Proteome Discoverer software suite (v2.5, 
Thermo Fisher Scientific) and the Mascot search engine (v2.6, Matrix Science [42]). 
The data were searched against a Swiss-Prot human database (as of March 2021, 20386 
entries) plus eGFP, mCherry, a list [43] of common contaminants and all the correspond-
ing decoy entries. For peptide identification, a precursor ion mass tolerance of 7 ppm 
was used for MS1 level, trypsin was chosen as enzyme, and up to three missed cleavages 
were allowed. The fragment ion mass tolerance was set to 0.5 Da for MS2 spectra. Oxi-
dation of methionine and N-terminal protein acetylation were used as variable modifica-
tions whereas carbamidomethylation on cysteines was set as a fixed modification. False 
discovery rate (FDR) in peptide identification was set to a maximum of 1%.

The best three peptides of mCheery and eGFP were used in the PRM method.

PRM data A full MS scan with 1 micro scans at resolution of 30,000 was used over a 
mass range of m/z 350–1400 with detection in the Orbitrap mass analyzer. A PRM (par-
allel reaction monitoring) method was used for data acquisition with a quadrupole isola-
tion window set to 1.4 m/z and MSMS scans over a mass range of m/z 300–2000, with 
detection in the Orbitrap at resolution of 120,000. MSMS fragmentation was performed 
using HCD at 30 NCE; the auto gain control (AGC) was set to 1e5 and maximum injec-
tion time of 118 ms. Peptide masses (m/z) were defined in the mass list table for further 
fragmentation (Table 1).
The Skyline software [44] (v20.2.1.278) was used to generate the libraries (observed as 
the output of the DDA data Proteome Discoverer (v2.5) search and predicted with Prosit 
[45]) and extract the fragment areas of each peptide.
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RT‑qPCR

HEK293 and A549 cells were seeded in 6-well plates in technical replicates for each con-
dition. Expression vectors were transfected with Lipofectamine 3000 (Invitrogen) and 
gene expression was induced with 500 ng/mL of doxycycline during 48h. RNA isola-
tion was performed with the RNeasy micro kit (Qiagen). eGFP and mCherry transcript 
abundances were quantified by RT-qPCR (Power SYBR Green RNA-to-CT 1-Step Kit, 
ThermoFisher). Primers for  mCLeGK1: GFPfwd 5′-GAG CTC AAG GGC ATC GAC TT-3′, 
GFPrev 5′-CTG CTG GTA ATG GTC TGC CA-3′, mCherryfwd 5′-AGG TGC ACA TGG 
AAG GAA GT-3′, mCherryrev 5′-TGT GGG GAG AGT ATG TCC CAT-3′. Primers for 
 mCLeGK2: GFPfwd 5′-TAC GTG CAG GAA CGG ACA AT-3′, GFPrev 5′-GAT GTT GCC 
GTC CTC CTT GA-3′, mCherryfwd 5′-GGG AAG CAT CTA GCG AAC GA-3′, mCher-
ryrev 5′-CAC CAG GTA GTT GAA CAG GCT-3′. Primers for  mCKeGL1: GFPfwd 5′-TGC 
CGT GGC CTA CTT TAG TT-3′, GFPrev 5′-TAC GTA CCC TTC GGG CAT TG-3′, mCher-
ryfwd 5′-GAC GCC GAG GTG AAA ACA AC-3′, mCherryrev 5′-TGT AGT CCT CGT TGT 
GCG AC-3′. Primers for  mCKeGL2: GFPfwd 5′-GGA TGG AGA CGT GAA CGG AC-3′, 
GFPrev 5′-AAG GCA CTG GTA GCT TTC CT-3′, mCherryfwd 5′-AAG CTG AAG GTG 
ACG AAG GG-3′, mCherryrev 5′-TCG AAG TTC ATC ACC CGC TC-3′. As both eGFP 
and mCherry genes were in the same expression cassette, for each sample, the Ct values 
of eGFP were normalized to the Ct values of mCherry, ΔCt =(CteGFP -CtmCherry) and rep-
resented as  2−ΔCt.

Data sources

Protein‑to‑mRNA ratios

The PTR ratios of the HPA were directly retrieved from the Table EV3 of Eraslan et al. 
(2019) [17]. In this dataset, protein levels are determined as absolute abundances based 
on their iBAQ quantification. As for the GTEx data, we retrieved protein and mRNA 
levels from the supplement of Jiang et al. (2020) [19], respectively. In this case, the pro-
teomics measurements are relative quantifications from a tandem mass tag (TMT) 
10plex/MS3 mass spectrometry strategy. To compute their PTR ratios, we followed the 
same pipeline as in the HPA: (1) proteins with an abundance of 0 were considered as 
missing values (NA); (2) protein quantifications were adjusted to have in each tissue the 
same median than the overall median; (3) genes with a TPM lower than 10 were taken as 
non-transcribed (NA). With that, comparable PTR values between HPA and GTEx are 
obtained (Additional file 1: Fig. S1A).

Table 1 Peptide masses (m/z) defined in the PRM method for further fragmentation

Peptide and gene name m/z z

FSVSGEGEGDATYGK_GFP 752.3335 2

EDGNILGHK_GFP 491.7513 2

FEGDTLVNR_GFP 525.7644 2

KPVQLPGAYNVNIK_mCherry 514.2997 3

LDITSHNEDYTIVEQYER_mCherry 742.3501 3

HSTGGMDELYK_mCherry 619.2795 2
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Codon and codon pair usage tables

The codon usage and codon pair usage tables of Homo sapiens from RefSeq were down-
loaded from the Codon/Codon Pair Usage Tables (CoCoPUTs) project release as of June 
9, 2020 [46]. Regarding the codon usage of misframed coding sequences and their dinu-
cleotide composition, we computed them from the latest release of the CCDS database 
of human sequences (release 22) [47].

Translational efficiencies

The processed data of matched ribosome profiling and mRNA-seq samples from the 
brain, liver, and testis was retrieved from ArrayExpress (E-MTAB-7247) [21]. Transla-
tional efficiencies were then computed as the ratio  FPKMRibo-seq/FPKMmRNA-seq.

Protein half‑life

The log-10-transformed protein half-lives for B cells, NK cells, hepatocytes, monocytes, 
and HeLa cells were downloaded from Eraslan et  al. (2019) [17] (https:// github. com/ 
Erasl anBas/ Human Trans Prot), which includes data from two studies [22, 23]. Given the 
concordance of half-lives among the five cell types (Additional file 2), we used their aver-
age for the analysis in this work (Additional file 1: Fig. S2B).

mRNA half‑life

The log-10-transformed protein half-lives for HEK293, HeLa, and K562 cells were down-
loaded from Eraslan et  al. (2019) [17] (https:// github. com/ Erasl anBas/ Human Trans 
Prot), which includes data from three studies [24–26]. Given the concordance of half-
lives among the three cell types (Additional file 2), we used their average for the analysis 
in this work (Additional file 1: Fig. S2C).

Blood secretome

Using the predictions by the HPA [16], there are 2641 secretome genes, 729 of which are 
secreted to blood. Given that we were concerned on proteins that are not detected at 
the protein levels because of their systemic rather than local secretion, we focused our 
analysis on the latter (Additional file 2).

Computational analysis

High‑PTR and low‑PTR gene sets

As PTR values from GTEx were computed from relative TMT proteomics in contrast 
to the absolute iBAQ quantification of HPA, they were not directly comparable and 
thus we defined the high-PTR and low-PTR gene sets for each dataset separately. On 
the one hand, high-PTR genes fulfilled three conditions: (1) genes having a PTR fold 
change compared to the average of all other tissues larger than 2, (2) genes with the 
highest PTR among all tissues, (3) genes detected in at least 3 tissues in the dataset. On 
the other hand, low-PTR genes were defined as: (1) genes having a PTR fold change 
compared to the average of all other tissues smaller than 0.5, (2) genes with the low-
est PTR among all tissues, (3) genes detected in at least 3 tissues in the dataset. As a 
result, we defined one high-PTR and one low-PTR gene set for each tissue in each data-
set. For those 17 tissues in common between both HPA and GTEx datasets, the union 

https://github.com/EraslanBas/HumanTransProt
https://github.com/EraslanBas/HumanTransProt
https://github.com/EraslanBas/HumanTransProt
https://github.com/EraslanBas/HumanTransProt
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between both datasets was taken except for genes with contradictory labels, which were 
excluded.

The same three conditions were used to define the high-mRNA/low-mRNA and the 
high-protein/low-protein gene sets (Additional file 1: Fig. S5). With these, we followed 
the same subsequent steps as with PTR sets.

Random forest classifiers

To identify the most important codons determining high-PTR vs low-PTR genes, we 
computed their codon usage normalized by length, so that all 61 amino-acid-encod-
ing codons sum up to 1. Taking this table of normalized codon usage as features, we 
applied a random forest (RF) classifier, populated with 100 decision trees, using the 
scikit-learn package [48]. Therefore, for each of the 36 tissues, we developed a model 
for predicting the high-PTR vs low-PTR genes based on their codon usage. To con-
trol for size differences between high-PTR and low-PTR groups, we iteratively sam-
pled equal-sized groups, for n = 100 iterations. Furthermore, we validated the results 
with a stratified 5-fold cross-validation. In order to evaluate the performance of the 
RF models, we computed the area under the curve (AUC) of receiver operating char-
acteristic (ROC) plots (Fig. 2A). We took the average and standard deviation across all 
iterations. Similarly, we computed the relative feature weights corresponding to each 
of the 61 codons (Fig. 2B).

To validate that the predictive potential of RF classifiers were codon-specific, we sim-
ilarly computed the length-normalized codon usage of + 1 and + 2 misframed coding 
sequences as well as dinucleotide usage. By running the exact same pipeline as above, we 
determined the average AUC of these three control RF classifiers (Additional file 3). We 
used a one-tailed binomial test to analyze whether the AUCs of controls were lower than 
the original model more often than expected by chance (p = 1/2).

While the relative feature weights determine the importance of each codon in 
distinguishing high-PTR vs low-PTR genes, they do not provide any directional-
ity. To analyze whether codons are enriched or depleted in high-PTR vs low-PTR 
genes, we computed the ratios between the average length-normalized codon usage 
of high-PTR and low-PTR genes. Similarly, codon pair ratios were computed in the 
same way.

Among the total of 61 amino-acid-encoding codons, we also analyzed how many 
of them were actually informative in the models using a recursive feature elimination 
(RFE). Therefore, for each tissue, we started by building a full model with all 61 codons 
and then recursively removed the least important one, as determined by the relative fea-
ture weights, until only one was left. At each step, we computed the AUC of the ROC 
curve of the model as explained above (Additional file 1: Fig. S3B).

Enrichment map

For this analysis, in order to allow an overlap between tissue gene sets, we used a slightly 
less stringent tissue-specificity definition. High-PTR sets were defined as (1) genes hav-
ing a PTR fold change compared to the average of all other tissues larger than 2 and (2) 
genes detected in at least 3 tissues in the dataset, and vice versa for low-PTR sets.
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To analyze the overlap between tissue gene sets, we used the EnrichmentMap app 
from Cytoscape [49]. We defined a generic input of high-PTR and low-PTR sets of pro-
teins per tissue. Similarity was computed as the overlap coefficient ([size of (A intersect 
B)]/[size of (minimum(A ,B))]).

Gene Ontology enrichment analysis

Gene Ontology (GO) categories of Biological Processes were analyzed for enrichment 
as of May 27, 2021 [50]. Enrichment analyses were performed by PANTHER using the 
Fisher’s exact test and Bonferroni correction for multiple testing [51].

Principal component analysis of codon pairs

We applied principal component analysis to the codon pair ratios of each tissue in order 
to explore the main variability among tissues along the 4096 codon pair ratios.

Linear regression of codon pairs

We fitted a linear regression model between the observed codon ratios (dependent vari-
able) and the expected ratios based on single codons alone (independent variable). The 
expected values were computed as the product of the ratios of the two codons that con-
stitute the pair. For each model, we computed the R squared, the residual standard error 
(RSE), and the model p-value (Additional file 4).

Statistical analysis

All details of the statistical analyses can be found in the “Results” section and the figure 
legends. We used a significance level of 0.05.
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