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Translational efficiency across healthy and tumor
tissues is proliferation-related
Xavier Hernandez-Alias1 , Hannah Benisty1 , Martin H Schaefer1,2,* & Luis Serrano1,3,4,**

Abstract

Different tissues express genes with particular codon usage and
anticodon tRNA repertoires. However, the codon–anticodon co-
adaptation in humans is not completely understood, nor is its
effect on tissue-specific protein levels. Here, we first validated the
accuracy of small RNA-seq for tRNA quantification across five
human cell lines. We then analyzed the tRNA abundance of more
than 8,000 tumor samples from TCGA, together with their paired
mRNA-seq and proteomics data, to determine the Supply-to-
Demand Adaptation. We thereby elucidate that the dynamic adap-
tation of the tRNA pool is largely related to the proliferative state
across tissues. The distribution of such tRNA pools over the whole
cellular translatome affects the subsequent translational effi-
ciency, which functionally determines a condition-specific expres-
sion program both in healthy and tumor states. Furthermore, the
aberrant translational efficiency of some codons in cancer, exem-
plified by ProCCA and GlyGGT, is associated with poor patient
survival. The regulation of these tRNA profiles is partly explained
by the tRNA gene copy numbers and their promoter DNA
methylation.
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Introduction

In the light of the genetic code, multiple 3-letter combinations of

nucleotides in the mRNA can give rise to the same amino acid,

which are known as synonymous codons. However, despite the

homology at the protein level, these different codons are recognized

distinctly by the transcriptional and translational machineries

(Supek, 2016; Hanson & Coller, 2017) and ultimately cause changes

at multiple levels of gene expression. Therefore, the non-uniform

abundance of synonymous codons across different tissues and

among distinct functional gene sets has been proposed as an adap-

tive mechanism of gene expression regulation (Najafabadi et al,

2009), particularly linked to the proliferative state (Gingold et al,

2014). Nevertheless, in human, it is still under debate whether the

efficiency of gene expression is the main selective pressure driving

the evolution of genomic codon usage (Pouyet et al, 2017).

The 61 amino-acid-coding codons need to be recognized by 46

different tRNA isoacceptors distributed across 428 Pol-III-transcribed

tRNA genes (Chan & Lowe, 2016), thus requiring wobble interac-

tions (non-Watson-Crick base pairing). This complexity of the tRNA

repertoire is further enhanced by an average of 11–13 base modifi-

cations per tRNA and all possible combinations thereof (Schimmel,

2018). The underlying mechanisms regulating tRNA gene expression

and modification are far from resolved (Pan, 2018; Rak et al, 2018).

However, it has been established that different conditions and

tissues showcase distinct tRNA abundances (Dittmar et al, 2006;

Gingold et al, 2014) and codon usages (Najafabadi et al, 2009;

Waldman et al, 2010).

In order to understand such changes in codon–anticodon co-

adaptation, orthogonal datasets of gene expression including tRNA

quantification are required, which needs to overcome the challenges

of strong secondary structures and abundant chemical modifi-

cations. Recent technological developments have paved the way for

sensitive high-throughput tRNA sequencing across tissues and

conditions (Zheng et al, 2015a; Gogakos et al, 2017a). Aside from

these methods and despite the lower coverage, tRNA reads can also

be detected from generic small RNA-seq datasets (Guo et al, 2015,

2016; Pundhir & Gorodkin, 2015; Torres et al, 2015a; Hoffmann

et al, 2018). In this context, The Cancer Genome Atlas (TCGA) has

been recently used to investigate the alteration of tRNA gene expres-

sion and translational machinery in cancer, which may play a role

in driving aberrant translation (Zhang et al, 2018, 2019).

To validate the use of small RNA-seq for tRNA quantification, we

first compare tRNA levels determined in HEK293 by well-established

tRNA sequencing methods (Hydro-tRNAseq and demethylase-

tRNAseq) (Zheng et al, 2015a; Gogakos et al, 2017a; Mattijssen

et al, 2017a), with those obtained by small RNA-seq. Then, we

quantify the tRNA repertoire of five cell lines using Hydro-tRNAseq

and perform small RNA-seq in parallel. Comparison of the tRNA
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measures obtained by both approaches shows that it is possible to

accurately estimate relative tRNA abundance of cells and tissues

using small RNA-seq. Furthermore, we show that both types of

quantification are informative enough to distinguish between the

five analyzed human cell lines covering multiple tissue types. In

consequence, we apply a tRNA-specific computational pipeline to

re-analyze 8,534 small RNA-seq datasets from TCGA (Chu et al,

2016). We find that the tissue specificity of tRNA profiles is largely

proliferation-related, even within healthy tissues. The tRNA quan-

tification of TCGA samples enables their comparison with paired

and publicly available mRNA-seq, proteomic, DNA methylation,

and copy number data, which underscores the role of tRNAs in

globally controlling a condition-specific translational program. We

discover multiple codons, including ProCCA and GlyGGT, whose

translational efficiency is compromised and leads to poor prognosis

in cancer. Finally, promoter DNA methylation and tRNA gene copy

number arise as two regulatory mechanisms controlling tRNA abun-

dances in cancer.

Results

tRNA quantification and modifications from small RNA-seq data

In order to test how accurately we can extract tRNA abundance

information contained in small RNA sequencing data, we re-analyze

four publicly available datasets of the cell line HEK293 (Flores et al,

2014a; Data ref: Flores et al, 2014b; Mefferd et al, 2015a; Data ref:

Mefferd et al, 2015b; Torres et al, 2015a; Data ref: Torres et al,

2015b,c). In contrast to previous studies analyzing tRNA expression

from small RNA-seq data (Zhang et al, 2018, 2019), we use a

computational pipeline specifically developed for the accurate

mapping of tRNA reads (Hoffmann et al, 2018) in order to quantify

all different isoacceptor species (Fig 1A, see Materials and Meth-

ods). To validate the accuracy of these small RNA-seq quan-

tifications, we retrieve four datasets of well-established tRNA

sequencing methods (Hydro-tRNAseq and demethylase-tRNAseq)

applied to the same cell type (Zheng et al, 2015a; Data ref: Zheng

et al, 2015b; Gogakos et al, 2017a; Data ref: Gogakos et al, 2017b;

Mattijssen et al, 2017a; Data ref: Mattijssen et al, 2017b; preprint:

Benisty et al, 2019a; Data ref: Benisty et al, 2019b), which autocor-

relate in the range of 0.75–0.85 among themselves (Table EV1,

Fig EV1A). In comparison, our four HEK293 small RNA-seq quan-

tifications show an average Spearman correlation against these four

conventional datasets of 0.73. Compared to the Zhang et al (2018)

quantification, which correlate in the range of 0.60–0.77

(Table EV1, Fig EV1A), our tRNA-specific mapping pipeline

performs slightly better than the previously published protocol. It

has been reported that there are tRNA-derived fragments naturally

produced and having other functions different from translation

(Schimmel, 2018), which could confound the tRNA quantification.

Although we cannot exclude the presence of tRNA-derived frag-

ments in small RNA-seq datasets (Torres et al, 2019), we found that

no differences between reads with or without mismatches are found

when compared to tRNAseq protocols in which tRFs are specifically

removed before sequencing.

Further than correlating small RNA-seq data with conventional

tRNAseq datasets, we analyze whether small RNA-seq

quantifications are informative enough to distinguish between dif-

ferent human cell lines covering multiple tissue types. We therefore

apply both small RNA-seq and Hydro-tRNAseq to HEK293 (kidney),

HCT116 (colon), HeLa (cervix), MDA-MB-231 (breast), and BJ

fibroblasts. However, given the high variability between replicates

of MDA-MB-231 Hydro-tRNAseq quantifications, this cell line was

excluded from further analyses (Table EV2). First, the correlations

between the two methods of identical samples and computational

mapping pipeline range between 0.93 and 0.96 for all cell lines.

tRNA quantifications from both protocols are compared, and signifi-

cantly higher Spearman correlations are obtained within matching

samples versus mismatching cell lines (Fig 1B). In order to assess

the amount of tRNA variability coming from either the sequencing

method or the cell lines, a principal component analysis of these

tRNA quantifications indicates that both factors influence variability

to a similar extent (Fig EV1B, > 30% variance each). Furthermore,

to validate that small RNA-seq is similarly informative of cell type

differences as Hydro-tRNAseq, we show that a linear discriminant

analysis of the data is able to discriminate between cell lines regard-

less of the sequencing protocol (Fig EV1B).

We also detect tRNA base modifications in both protocols by

nucleotide variant calling, as described in Hoffmann et al (2018). In

all cases, considering the modifications that are detected in all three

replicates, Hydro-tRNAseq datasets identify a larger number of

modifications than small RNA-seq, as expected by the more uniform

and deeper coverage of this method (Fig EV2, Table EV2). Further-

more, we detect a significant enrichment of the Hydro-tRNAseq

modifications in the small RNA-seq data (P < 1e-16, Fisher’s test),

indicating that the latter contains also information on tRNA modifi-

cations (Fig 1C). Although the exact nature of modifications cannot

be determined by sequencing, most frequent nucleotide mismatches

in both sequencing methods include A-to-G changes at position 34

and 37 (Fig EV3, Table EV3), which correspond to known modifi-

cations such as adenosine-to-inosine editing and 1-methylinosine,

respectively (Pan, 2018). Overall, most of the known modification-

specific mismatches can be retrieved with both small RNA-seq and

Hydro-tRNAseq (Table EV3), while the deeper coverage of the latter

improves its sensitivity.

Taken together, these observations demonstrate the applicability

of small RNA-seq data for the quantification of tRNAs and their

modifications. We therefore apply the same computational pipeline

to all healthy and primary tumor small RNA-seq samples from 23

cancer types of The Cancer Genome Atlas (TCGA), which consists

of 8,605 samples distributed among 17 different human tissues

(Fig 1D, number of samples and their abbreviations in Table EV4).

Proliferation is the major driver of tissue specificity in tRNAs

To determine the tissue specificity of tRNAs in physiological condi-

tions, the tRNA levels of all 675 healthy samples in TCGA tissues

are analyzed from small RNA-seq data. For all 46 annotated anti-

codons, tRNA abundances have significant differences between

tissues, as detected by Kruskal–Wallis test (q < 0.05, FDR-

corrected). Such differences between tissues are also observed by

hierarchical clustering of the median abundance between all groups

(Fig 2A). Furthermore, healthy samples from cancer types originat-

ing from the same tissue tend to cluster together: READ and COAD

from the gut; KIRC, KIRP, and KICH from the kidney; LUAD and
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Figure 1. tRNA quantification and modifications from small RNA-seq data.

A Schematic pipeline for accurate mapping of tRNA reads.
B Correlations between tRNA quantifications by small RNA-seq and Hydro-tRNAseq of matching (correlations within the same cell line) versus non-matching (different

cell lines) samples. Center values represent the median. The P-value corresponds to a one-tailed Wilcoxon rank-sum test, with nmatching = 9 and nnon-matching = 63.
C Overlap of the detected tRNA modifications upon variant calling by both methods.
D The TCGA network contains small RNA-seq data alongside mRNA-seq, DNA methylation arrays, non-targeted proteomics, and copy number alteration quantification

comprising 17 tissues.

Source data are available online for this figure.
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LUSC from the lung; UCEC and CESC from the uterus; and LIHC and

CHOL from the liver (refer to Table EV4 for full cancer names). On

the other hand, in terms of anticodon abundances, three main

subgroups of tRNAs with low, medium, and high levels can be

distinguished across all cancer types (Fig 2A).

Regarding codon usage, a measure of tRNA abundance taking

into account the relative contribution of each tRNA anticodon

among the set of synonymous codons of a certain amino acid is the

relative anticodon abundance (see Materials and Methods). Using

this measure, a principal component analysis (PCA) of all healthy

control samples in TCGA also shows clear differences between

tissues (Fig 2B). To interrogate the biological functions related to

the variability of anticodon abundances between samples, we

compute the correlation of the whole mRNA-seq transcriptome

against the first PCA component, which explains 18.5% of the vari-

ance, and analyze it by gene set enrichment analysis (GSEA). As a

result, the top correlating genes are enriched in proliferation and

immune cell activation, while the lowest correlations belong to

genes related with oxidative metabolism and respiration (Fig 2C,

Table EV5). Moreover, our first component correlates positively

with the proliferation marker Ki67 (Rspearman = 0.45) (Scholzen &

Gerdes, 2000). This confirms, as has been previously suggested

(Gingold et al, 2014), that there is a proliferative tRNA expression

program.

Overall, we observe patterns of tissue-specific tRNA profiles in

TCGA healthy samples. Furthermore, based on both the gene set

enrichment and the association to a proliferation marker, our analy-

ses identify the proliferative state of tissues as the major biological

function driving the variability on tRNA abundances.

tRNA repertoires determine tissue-specific
translational efficiency

Given that different tissues express distinct tRNA repertoires, we

wondered whether they could have an effect in protein translation

elongation. The so-called translational efficiency is defined as the

rate of protein production from mRNA, and multiple indices and

models can be described to estimate it (Gingold & Pilpel, 2011). In

this article, and based on previous studies underscoring the global

control role of codon usage as a competition for a limited tRNA pool

(Gingold et al, 2012; Pechmann & Frydman, 2013; Frumkin et al,

2018), we define the Supply-to-Demand Adaptation (SDA) as the

balance between the supply (i.e., the anticodon tRNA abundances)

and demand (i.e., the weighted codon usage based on the mRNA

levels) for each of the 60 codons (excluding methionine and stop

codons). Furthermore, we normalize both the codon and anticodon

abundances within each amino acid family (i.e., relative to the most

abundant synonymous codon/anticodon), in order to remove the

effect of amino acid biases and get a cleaner measure of codon opti-

mality (Eraslan et al, 2019).

To validate the suitability of SDA in determining the translational

efficiency, we correlate the SDA value of all proteins against the

available proteomics data of paired TCGA samples (Slebos et al,

2015; Mertins et al, 2016), which includes breast and colorectal

tissues (tumor only, as no healthy samples are available). Although

correlations are modest, both the protein abundances and the

protein-to-mRNA ratios correlate significantly better with SDA than

with the classical tRNA Adaptation Index [tAI] (dos Reis et al, 2003,

2004) or with a relative tAI with normalized weights within

each amino acid family [RtAI] (Figs 3A and EV4A and B). In conse-

quence, including the mRNA codon demand into the SDA metric

outperforms other tRNA-only metrics of translational efficiency.

Furthermore, the correlation of SDA with protein-to-mRNA ratio is

slightly but significantly higher than with protein levels alone,

which indicates that the first is a better proxy for the process of

translation (Fig 3A).

Next, we calculate the SDA for the 620 healthy samples for which

both tRNA abundances and mRNA levels are available. When

analyzing the tissue medians of SDA weights per each codon

(SDAw), we observe that most codons are optimally balanced

(SDAw = 1), while 12.4 and 23.6% of codons are favored

(SDAw > 2) and disfavored (SDAw < 0.5), respectively. The tissue

clustering again shows that healthy samples of cancer types from

the same tissue have similar SDAw profiles, which separates two

major clusters of mostly high-Ki67 and low-Ki67 tissues (Fig EV4C).

In order to identify the codons contributing most to the dif-

ferences between tissues, we compute a bidimensional PCA across

all samples and SDAw (Fig 3B). Both the first and second compo-

nents significantly correlate with the proliferation marker Ki67 (0.4

and 0.35; see Fig 3B). In agreement with the proliferation- and dif-

ferentiation-related codons of Gingold et al (2014), such prolifera-

tive pattern is similarly reproduced by the codons contributing to

the first PCA component, which has the strongest association to

proliferation (Fig 3B). Further, similarly to the tRNA abundances

(Fig 2B), a GSEA of correlating genes with the first component

highlights the link with proliferation-related terms (Table EV6). On

the other hand, the first component also clearly separates codons

based on the GC content of the third codon base, which has

recently been associated with differentiation (high in nnC/G

codons) versus self-renewal functions (high in nnA/T) (Bornelöv

et al, 2019), as well as with proliferative transcriptomes

(Fornasiero & Rizzoli, 2019).

The previous analyses support the idea of proliferation-related

tRNAs driving changes in translational efficiencies. In that case, we

expect that the two most extreme tissues in terms of proliferation

(brain and gut, excluding thymus for its low number of samples)

differ in the optimization of proliferation-related proteins. As such,

we compute the average SDAw for these two tissues, analyze the

subsequent SDA score for each protein, and perform a GSEA of

the differential SDA per protein. Consistent with our hypothesis, the

results indicate that gut-optimized proteins are enriched in transla-

tion, DNA replication, and protein localization, whereas brain-opti-

mized proteins are related to phospholipid production and neural

function (Fig 3C, Table EV7). Taken together, this result confirms

that the tRNA-dependent translational efficiency is optimized for the

translation of tissue-specific genes, particularly in function of the

proliferation state.

Aberrant translational efficiencies drive tumor progression

Given that proliferation is a major determinant of translational effi-

ciency in healthy tissues, its importance could be extrapolated to

pathological conditions such as cancer. In fact, aberrant expression

of tRNAs and codon usage have been broadly related with tumorige-

nesis and cancer progression (preprint: Benisty et al, 2019a;

Goodarzi et al, 2016; Zhang et al, 2018, 2019). We therefore
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Figure 2. Proliferation is the major driver of tissue specificity in tRNAs.

A Medians of square-root-normalized tRNA abundances across all TCGA tissues. The color of the tissue labels corresponds to the average Ki67 expression. Refer to
Table EV4 for full cancer type names and number of samples.

B Principal component analysis (PCA) of the relative anticodon abundances (RAA, see Materials and Methods) of all healthy samples of TCGA, where the color scale
corresponds to the mean tissue expression of Ki67. The Spearman correlations of Ki67 with the components are shown, as well as the samples of most extreme
tissues.

C Top positive and negative GO terms upon gene set enrichment analysis (GSEA) of the correlations of the first PCA component against all genes.

Data information: Abbreviations stand for BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma), CESC (cervical squamous cell carcinoma and
endocervical adenocarcinoma), CHOL (cholangiocarcinoma), COAD (colon adenocarcinoma), ESCA (esophageal carcinoma), GBM (glioblastoma multiforme), HNSC (head
and neck squamous cell carcinoma), KICH (kidney chromophobe), KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), LIHC (liver
hepatocellular carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), PAAD (pancreatic adenocarcinoma), PCPG (pheochromocytoma and
paraganglioma), PRAD (prostate adenocarcinoma), READ (rectum adenocarcinoma), SKCM (skin cutaneous melanoma), STAD (stomach adenocarcinoma), THCA (thyroid
carcinoma), THYM (thymoma), UCEC (uterine corpus endometrial carcinoma).
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Figure 3. tRNA repertoires determine tissue-specific translational efficiency.

A Three metrics of translational efficiency (the classical tAI, a relative tAI with normalized weights within each amino acid family, and the Supply-to-Demand
Adaptation described in this article) are Spearman correlated against two proxies of translation (protein abundance and protein-to-mRNA ratio) for all samples for
which proteomics data are available (BRCA, COAD and READ). Center values represent the median. Statistical differences are determined by sample-paired two-tailed
Wilcoxon rank-sum test (n = 219).

B Principal component analysis (PCA) of the SDAw of TCGA, where the color scale corresponds to the mean tissue expression of Ki67. The Spearman correlations of Ki67
with the components are shown, as well as the samples of most extreme tissues. On the right, the top and bottom proliferation- and differentiation-related codons,
as defined by Gingold et al (2014), ordered by their contribution to the first PCA component. Refer to Table EV4 for full cancer type names and number of samples.

C GSEA of the differential SDA between extreme tissues (DSDA = SDAColorectal - SDABrain), showing the top five GO terms with high (left) and low (right) SDA in colorectal
versus glial tissues.
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investigate 22 cancer types from TCGA in order to determine which

codons are translationally compromised in disease.

Similar to the analysis performed on the healthy tissues, we

quantify all tRNA abundances of TCGA primary tumor samples

(Fig EV5) and determine their corresponding translational efficien-

cies using the SDA metric. By analyzing the differential SDAw

between normal and tumor samples, we observe many significant

differences in all 60 codons across the 22 cancer types (Fig 4A).

Among the most consistent changes, the ProCCA codon is signifi-

cantly more favored in tumors for 8 out of 10 cancer types, while the

ProCCG is disfavored in 14 out of 16 cancers (Fig 4B). In the case of

glycine, GlyGGT is better adapted in healthy samples (13/13),

whereas tumor mostly favors GlyGGC (9/12) and GlyGGG (7/9).

In terms of patient survival, we divide the TCGA patients in two

groups based on their low or high tumor SDAw and analyze their

survival probability (Fig 4C, Table EV8). Among others, and consis-

tent with the previous analysis, high supply-to-demand weights of

ProCCA are associated with poor prognosis in kidney renal clear cell

carcinoma and kidney renal papillary cell carcinoma. Proline limita-

tion in clear cell renal cell carcinoma has been shown to compro-

mise CCA-decoding tRNAPro aminoacylation, leading to reduced

tumor growth (Loayza-Puch et al, 2016). In contrast, high SDAw of

GlyGGT and ValGTC lead to longer survival in kidney chromophobe

and head and neck squamous cell carcinoma, respectively.

To determine the impact of aberrant translational efficiencies in

regulating an oncogenic translation program, we calculate the dif-

ferential SDA for the whole genome based on the average SDAw of

healthy and tumor samples in kidney renal clear cell carcinoma,

since it is the cancer type with the most SDAw differences (Fig 4A).

The GSEA of the resulting DSDA score indicates that cancer SDAw

should favor the translation of proteins related to DNA replication

and gene expression, whereas the healthy kidney samples favor

development and differentiation processes (Table EV9). As the

SDAw of the ProCCA is specifically disturbed in cancer, we also

interrogate how this codon is distributed along the genome. We

therefore perform a GSEA on the relative codon usage of ProCCA,

which shows that DNA replication and cell cycle functions lie among

the most CCA-enriched genes, while morphogenesis and differentia-

tion terms are CCA-depleted (Table EV10). Together with the low-

proliferative state of kidney (Fig 2B), the over-efficiency of a prolif-

eration-related codon in this tissue can thus perturb its cellular SDA.

Overall, we detect differences at the level of SDAw between tumor

and healthy tissues, which show a functional relevance to the disease

state. Therefore, while the differential expression of tRNAs in TCGA

had been already discussed elsewhere (Zhang et al, 2018, 2019), we

could here elucidate their oncogenic effect in translational efficiency.

In particular, ProCCA appears as an interesting codon candidate in

favoring tumor progression, which we had also detected in healthy

tissues to be associated with proliferation (Fig 3B, Table EV6).

Promoter methylation and gene copy number regulate the
tRNA abundance

Aberrant translational efficiencies in cancer are partially caused by

the differential abundance of tRNA genes (Fig EV5). To determine

the underlying mechanisms driving changes in expression, we

retrieve the DNA methylation (typically occurring at CpG dinu-

cleotides) and copy number alteration (CNA) data from TCGA

samples, as a possible means for tRNA gene regulation. While CNA

information covers 84% of tRNA genes, the 450K BeadChip methy-

lation arrays used in TCGA are mostly centered on the coding

genome (Bibikova et al, 2011) and yield a coverage of only 37%.

In order to make the gene-based data comparable with the

measured isoacceptor-based tRNA abundances, we average methy-

lation and CNA levels over all genes within the same isoacceptor

family, at the cost of losing resolution. For each isoacceptor and

each cancer type, we finally fit a multiple linear regression to deter-

mine how are promoter methylation and CNA affecting tRNA

expression (Fig 5A, Table EV11). Among all models, the significant

coefficients for methylation and CNA are significantly negative and

positive, respectively. Despite the limited explained variance of the

models (average R2 = 0.023), such results suggest that promoter

methylation could contribute to inhibition of tRNA gene expression,

whereas an increase in the gene copy number would enhance tRNA

expression.

Given the association of the codon ProCCA with cancer prognosis

(Fig 4C), we explore the abundance pattern of tRNAPro in TCGA.

While both tRNAProTGG and tRNAProAGG are able to decode

ProCCA, the latter specifically appears overexpressed in 8 out of 9

cancer types (Fig EV5A), making it a candidate driver of the transla-

tional differences. To get a more accurate picture of the tRNA gene

methylation levels, we also analyze recently published bisulfite

sequencing data (Zhou et al, 2018), which, for 47 samples among

nine cancer types, improved the coverage of tRNA genes up to an

average of 81%. In total, tRNAProAGG genes stand among the most

duplicated and least methylated proline isoacceptors in cancer

(Fig EV6A and B), in particular at the chr6.tRNA12 and

chr16.tRNA12 genes (Fig 5B). Furthermore, tRNAProAGG gene dupli-

cations occur most frequently in kidney cancers (Fig EV6C). On the

other hand, although the other CCA-decoding tRNAProTGG is not dif-

ferentially expressed in cancer (Fig EV5), its genes are as similarly

methylated and duplicated as tRNAProAGG (Figs 5B and EV6).

In short, promoter methylation and CNA appear as two possible

regulatory mechanisms of tRNA expression in cancer, which

suggests that similar mechanisms that control the Pol-II-mediated

RNAs might also regulate the expression of Pol-III non-coding tran-

scriptome, such as tRNA genes. However, more accurate and high-

throughput data on the methylation and CNA of the non-coding

genome together with gene-based tRNA quantifications are needed

to make stronger associations.

Discussion

In this study, we use a systems biology approach to interrogate the

multi-omics TCGA dataset under the perspective of translational

efficiencies. We therefore first validate the suitability of small RNA-

seq data in reproducing conventional tRNAseq quantifications based

on a gold standard set of five tissue-wide human cell lines. In fact,

knowing that small RNA-seq datasets have a limited tRNA coverage

and tend to be biased toward tRNA fragments and unmodified tRNAs

(Torres et al, 2015a, 2019), we extend and apply a computational

pipeline for accurate mapping of tRNA reads (Hoffmann et al, 2018).

As a result, we obtain reproducible and informative quantifications of

all isoacceptors in our gold standard cell lines as well as in thousands

of samples across 23 cancer types of TCGA, exceeding the quality of
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similarly published data (Zhang et al, 2018, 2019). However, we

cannot exclude that tRNA-derived fragments (tRFs) could be interfer-

ing with our small RNA-seq quantifications. At the level of nucleotide

modifications (Pan, 2018), our tRNA mapping pipeline is also able to

detect most of the known mismatch-producing modifications of

mature tRNAs. All in all, even though our quantifications from small

A

B

C

Figure 4. Aberrant translational efficiencies drive tumor progression.

A Differential SDAw between healthy and tumor samples across 22 cancer types, as measured by log2(SDAwTumor/SDAwHealthy). Only significant differences are colored,
which are determined using a two-tailed Wilcoxon rank-sum test and corrected for multiple testing by FDR. Refer to Table EV4 for full cancer type names and
number of samples.

B Boxplot of the SDAw of ProCAA and AlaGCG codons across TCGA cancer types. Boxes expand from the first to the third quartile, with the center values indicating the
median. The whiskers define a confidence interval of median � 1.58*IQR/sqrt(n). Statistical differences are determined using a FDR-corrected two-tailed Wilcoxon
rank-sum test ns (P > 0.05), * (P ≤ 0.05), ** (P ≤ 0.01), *** (P ≤ 0.001), **** (P ≤ 0.0001).

C Survival curves for the previous codons in KIRC, KIRP, and BLCA patients. The survival analysis was performed for all codons whose SDAw were significantly different
in more than 5 cancer types in the one direction with respect to the other [Abs(UP-DOWN) > 5] and correspondingly corrected for multiple comparisons using FDR.
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RNA-seq just give an estimate of the tRNA abundances, the results

indicate that they can be rather precise proxies.

From these quantifications, we then elucidate their effect on the

translational efficiency by defining the SDA, for Supply-to-Demand

Adaptation, which is a balance between the tRNA supply and the

codon demand. Although a more accurate SDA would have deter-

mined the supply and demand based on the aminoacylated portion

of tRNAs (Evans et al, 2017) and the ribosome-bound mRNAs

(Ingolia et al, 2009), respectively, we approximate such measures

by our tRNA quantifications and the publicly available mRNA-seq

data of TCGA. In agreement with current studies showing that a

dynamic codon usage needs to compete for a limited tRNA pool

(Frumkin et al, 2018; Eraslan et al, 2019), we demonstrate that

SDA is better measure of codon optimality than previously

published metrics such as the tAI (dos Reis et al, 2003, 2004).

However, far from explaining the translation process, the still low

but significant correlations of protein-SDA in human, in contrast to

unicellular organisms, suggest that protein expression is also

dependent on other layers of regulation, such as transcriptional

and post-transcriptional machineries, translation initiation, epige-

netic modifications of DNA and RNAs, or protein degradation

mechanisms (Rudolph et al, 2016).

On the level of translational efficiency, in agreement with previ-

ous studies (preprint: Benisty et al, 2019a; Gingold et al, 2014), we

detect that the proliferative state is the major determinant of SDA

differences both across healthy tissues and in cancer. Moreover, in

contrast to recent work challenging the tissue specificity of codon–

anticodon co-adaptation in human (Rudolph et al, 2016; Eraslan

et al, 2019), our data here support the idea that tissue-specific

SDAw have functional implications on the tissue phenotype (e.g., in

favoring neural differentiation in brain or abnormal proliferation in

cancer). Furthermore, we observe a pattern of proliferative nnA/T

versus differentiative nnC/G codons. Based on ribosome profiling

experiments of pluripotency changes in embryonic stem cells (Bor-

nelöv et al, 2019), this could be attributed to the slower translation

in differentiated cells of codons decoded by tRNAs that require

adenosine-to-inosine modification at the wobble-base pairing posi-

tion. In particular, we detect the ProCCA codon to be significantly

more favored in proliferative cells and leading to poor cancer prog-

nosis in kidney carcinomas, specifically driven by an overexpression

of tRNAProAGG in cancer. Proline limitation in clear cell renal cell

carcinoma has indeed been shown to mostly compromise tRNA-

ProAGG aminoacylation, leading to slower proline translation and

reduced tumor growth (Loayza-Puch et al, 2016). Furthermore, in

support of our approach for isoacceptor quantification and transla-

tional efficiency, similar studies of tRNA levels in TCGA have

controversially claimed an opposite prognostic value for the ProCCA

codon in clear renal cell carcinoma (Zhang et al, 2018, 2019).

In an effort to elucidate the mechanisms regulating the expres-

sion of tRNAs, we observe that the tRNA gene copy number and

their DNA methylation state have a positive and inhibitory associa-

tion with tRNA abundances, respectively. In this context, DNA

methylation has previously been linked to the silencing of type II

genes (such as tRNAs) of the Pol-III transcriptome (Besser et al,

1990; Park et al, 2017). Here, we specifically propose a role for

DNA methylation in regulating the overexpression of tRNAProAGG

in cancer, although no direct causal link can yet be established. In

terms of the copy number alterations, it is not surprising to detect

tRNA gene duplications in tumors, but the functional role in

disease of different isodecoder genes that share the same anticodon

is still a matter of debate (Lant et al, 2019). With the advent of

more accurate and high-throughput multi-omics datasets, our

A

EXPRESSION  =  0  +  MeMe  +  CNACNA

Me<0 (p = 4.67e-05) CNA>0 (p = 1.80e-15)

B

Figure 5. Promoter methylation and gene copy number regulate tRNA abundance.

A A multiple linear regression (MLR) between square-root-normalized tRNA abundance and the average promoter methylation (450K BeadChip array) and gene copy
number at the isoacceptor level. Among all MLRs for each isoacceptor and each cancer type separately, the dots show the FDR-normalized significant coefficients
based on their corresponding t-statistic P-value, and red/blue shows whether they are negative/positive, respectively. The P-value corresponds to a two-tailed
binomial test between npos and nneg.

B Differential promoter methylation (bisulfite sequencing) between healthy and tumor samples of genes expressing proline tRNAs, as measured by D%Me =
(%MeTumor-%MeHealthy). Refer to Table EV4 for full cancer type names and number of samples.
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knowledge on the underlying mechanisms controlling tRNA

expression, degradation, and the effect of their modifications will

be further expanded (Pan, 2018; Rak et al, 2018). Recent studies in

TCGA have actually observed an upregulation of tRNA-modifying

enzymes, as well as proposed a link of tRNA-derived fragments

(tRF) to proliferation (Zhang et al, 2018; Telonis et al, 2019).

Overall, this is the first high-throughput study of codon–

anticodon translational efficiency over thousands of samples

comprising multiple tissues and disease. We therefore demon-

strate a functional role for the proliferation-driven tRNA abun-

dance differences in determining a tissue-specific phenotype, both

in physiological and pathological conditions. In the future, we

expect to validate the effect of such differential translational

efficiency by integrating perturbation-based data and including

additional gene expression regulatory layers such as tRNA

modifications.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Chemicals, enzymes, and other reagents

Antarctic phosphatase New England BioLabs Cat#M0289

T4 Polynucleotide Kinase New England BioLabs Cat#M0201

ProtoScript II Reverse Transcriptase New England BioLabs Cat#M0368

miRNeasy Mini kit Qiagen Cat#217004

15% TBE–urea gels NOBEX, Invitrogen Cat#EC6885BOX

RNeasy MinElute Cleanup Kit Qiagen Cat#74204

QIAquick PCR Purification Kit Qiagen Cat#28106

Experimental models

BJ/hTERT Gift from Anders H. Lund laboratory (Disa Tehler). N/A

HeLa ATCC CCL-2

HEK293 ATCC CRL-1573

HCT116 ATCC CCL-247

MDA-MB-231 ATCC HTB-26

Software

BBMap [v38.22] Bushnell B. https://sourceforge.net/projects/bbmap/

FastQC [v0.11.4] Andrews S. https://www.bioinformatics.babraham.ac.uk/projects/fastqc

SAMtools [v1.3.1] (Li et al, 2009) http://samtools.sourceforge.net

tRNAscan-SE [v2.0] (Chan & Lowe, 2019) http://lowelab.ucsc.edu/tRNAscan-SE

BEDtools [v2.27.1] (Quinlan & Hall, 2010) https://bedtools.readthedocs.io/en/latest

Segemehl [v0.3.1] (Hoffmann et al, 2009) https://www.bioinf.uni-leipzig.de/Software/segemehl

Picard [v2.18.17] Broad Institute https://github.com/broadinstitute/picard

GATK [v3.8] (McKenna et al, 2010) https://software.broadinstitute.org/gatk

GSEA [v3.0] (Subramanian et al, 2005) https://http://software.broadinstitute.org/gsea

BLAST [v2.9.0] (Altschul et al, 1990) https://blast.ncbi.nlm.nih.gov

Methods and Protocols

Cell lines
The cell lines included in this study are HeLa, HEK293, HCT116,

MDA-MB-231, and fibroblast BJ/hTERT. The sex of each cell line is

as follows: HeLa, female; HEK293, female; MDA-MB-231, female;

HCT116, male; and BJ fibroblasts, male. Cells were maintained at

37°C in a humidified atmosphere at 5% CO2 in DMEM 4.5 g/l

Glucose with UltraGlutamine media supplemented with 10% of FBS

and 1% penicillin/streptomycin.

RNA extraction
Cells were grown in 60 mm dishes for 48 h. Total RNA from HeLa,

HEK293, HCT116, MDA-MB-231, and fibroblast BJ/hTERT was

extracted using the miRNeasy Mini kit. Independent replicates were

grown, and RNA was extracted on different days. 20 lg of total RNA
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was treated following either the protocol of Hydro-tRNAseq

(Gogakos et al, 2017a) or generic small RNA-seq.

Hydro-tRNA sequencing
Total RNA was resolved on 15% Novex TBE–urea gels and size-

selected for 60-100 nt fragments. The recovered material was then

alkaline hydrolyzed (10 mM sodium carbonate and 10 mM sodium

bicarbonate) for 10 min at 60°C. The resulting RNA was de-phos-

phorylated with Antarctic Phosphatase (New England Biolabs) at

37°C for 1 h. De-phosphorylated RNA was purified with an RNeasy

MinElute spin column and re-phosphorylated with polynucleotide

kinase (NEB). PNK-treated tRNAs were purified with an RNeasy

MinElute spin column and, similar to small RNA-seq library prepa-

ration, adaptor-ligated, reverse-transcribed, and PCR-amplified for

14 cycles. The resulting cDNA was purified using a QIAQuick PCR

Purification Kit and sequenced on Illumina HiSeq 2500 platform in

50 bp paired-end format. Hydro-tRNAseq data of HCT116, MDA-

MB-231, and fibroblast BJ/hTERT have been generated in this study,

while sequencing data from HEK293 and HeLa had been previously

published (Data ref: Benisty et al, 2019b).

From all five cell lines, the isoacceptor abundances of MDA-MB-

231 yielded a median of 3–5 times higher standard deviation than

the other Hydro-tRNAseq quantifications (Table EV2), thus suggest-

ing some technical problem with this cell line. In consequence, this

cell line was excluded from any further analysis.

Small RNA sequencing
Total RNA was directly adaptor-ligated, reverse-transcribed, and

PCR-amplified for 12 cycles. The resulting cDNA was then size-

selected by gel electrophoresis, and fragments of 145–160 bp were

eluted and sequenced on Illumina HiSeq 2500 platform in 50 bp

single-end format.

The Cancer Genome Atlas multi-omics data
Raw small RNA sequencing data in BAM format were retrieved from

the GDC legacy archive after obtaining the necessary permissions

from dbGaP, comprising all healthy samples (NT, solid tissue

normal) and their primary tumor (PT) counterparts, which consists

of 23 cancer types (BRCA, PRAD, KICH, KIRP, KIRC, LUAD, LUSC,

HNSC, UCEC, CESC, LIHC, CHOL, THCA, COAD, READ, ESCA,

STAD, BLCA, PAAD, THYM, SKCM, PCPG, and GBM). For samples

for which more than one BAM was available, all files were down-

loaded. BAM files were converted to FASTQ using SAMtools

[v1.3.1] (Li et al, 2009). We retrieved publicly available and pre-

processed mRNA-seq gene expression, 450k DNA methylation,

bisulfite DNA methylation, and SNP6 segmented copy number alter-

ation (CNA) data from firebrowse. As for proteomics, pre-processed

protein assembly data and protein relative abundance were obtained

from CPTAC for TCGA samples including BRCA, COAD, and READ.

tRNA quantification and modification calling
In both Hydro-tRNAseq and small RNA-seq FASTQ files, sequencing

adapters were trimmed using BBDuk from the BBMap toolkit

[v38.22] (https://sourceforge.net/projects/bbmap): k-mer = 10

(allowing 8 at the end of the read), Hamming distance = 1,

length = 10–50 bp, and Phred > 25. Using the human reference

genome GRCh38 (Genome Reference Consortium Human Reference

38, GCA_000001405.15), a total of 856 nuclear tRNAs and 21

mitochondrial tRNAs were annotated with tRNAscan-SE [v2.0]

(Chan & Lowe, 2019).

Trimmed FASTQ files were then mapped using a specific pipeline

for tRNAs (Fig 1A) (Hoffmann et al, 2018). Summarizing, an artifi-

cial genome is first generated by masking all annotated tRNA genes

and adding pre-tRNAs (i.e., tRNA genes with 30 and 50 genomic

flanking regions) as extra chromosomes. Upon mapping to this arti-

ficial genome with Segemehl [v0.3.1] (Hoffmann et al, 2009), reads

that map to the tRNA-masked chromosomes or to the tRNA flanking

regions are filtered out in order to remove non-tRNA reads and

unmature-tRNA reads, respectively.

After this first mapping step, a second library is generated by

adding 30 CCA tails and removing introns from tRNA genes. All

100% identical sequences of this so-called mature tRNAs are clus-

tered to avoid redundancy. Next, the subset of filtered reads from

the first mapping is aligned against the clustered mature tRNAs

using Segemehl [v0.3.1] (Hoffmann et al, 2009). Mapped reads are

then realigned with GATK IndelRealigner [v3.8] (McKenna et al,

2010) to reduce the number of mismatching bases across all reads.

For quantification, isoacceptors were quantified as reads per

million (RPM). In order to increase the coverage for anticodon-level

quantification, we consider all reads that map unambiguously to a

certain isoacceptor, even though they ambiguously map to different

isodecoders (i.e., tRNA genes that differ in their sequence but share

the same anticodon). Ambiguous reads mapping to genes of dif-

ferent isoacceptors were discarded.

Regarding modification site calling, we only considered gene-

level uniquely mapped reads, as described to be optimal in Hoff-

mann et al (2018). As in their pipeline, in order to distinguish

mapping or sequencing errors from true misincorporation sites, we

use GATK UnifiedGenotyper [v3.8] (McKenna et al, 2010). Further-

more, given that tRNAs have variable D-loop and V-region, we map

the detected modifications to the standard tRNA model to make

them comparable. We align our tRNA library to the structurally

annotated human tRNAs from tRNAdb (Jühling et al, 2009) using

BLAST [v2.9.0] (Altschul et al, 1990) and fit the secondary structure

annotation of the top BLAST hits.

Translational efficiency analysis
Relative codon usage (RCU) and relative anticodon abundance (RAA)

The RCU/RAA is defined as the contribution of a certain codon/anti-

codon to the amino acid it belongs to. The RCU of all synonymous

codons and the RAA of all anticodons recognizing synonymous

codons therefore sum up to 1.

RCU ¼ xCP
i2Caa

xi
RAA ¼ xAP

i2Aaa
xi

where xC/xA refers to the abundance of the codon/anticodon C/A,

and Caa is the set of all synonymous codons, as well as Aaa is the

set of all anticodons that decode synonymous codons.

tRNA adaptation index (tAI)

As described by dos Reis et al (2003, 2004), the tAI weights every

codon based on the wobble-base codon–anticodon interaction rules.

Let c be a codon, then the decoding weight is a weighted sum of the

square-root-normalized tRNA abundances tRNAcj for all tRNA isoac-

ceptors j that bind with affinity (1–scj) given the wobble-base pairing
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rules nc. However, while dos Reis et al (2004) assume that highly

expressed genes are codon-optimized, here we use the non-opti-

mized s-values to avoid a circularity in our reasoning:

s ¼ 0; 0; 0; 0; 0:5; 0:5; 0:75; 0:5; 0:5½ �

wc ¼
Xnc

j¼1

1� scj
� �

tRNAcj

And therefore, the tAI of a certain protein is the product of

weights of each codon ik at the triplet position k throughout the full

gene length lg, and normalized by the length.

tAI ¼
�Ylg

k¼1

wik

�1=1g

For this and all further analyses, the coding sequences of Homo

sapiens from RefSeq were downloaded from the Codon/Codon Pair

Usage Tables (CoCoPUTs) project release as of February 6, 2019

(Alexaki et al, 2019; Athey et al, 2017).

Relative tRNA adaptation index (RtAI)

For comparison with the SDA (Fig 3A), an amino-acid-normalized

tAI measure is defined by dividing each tAI weight by the maximum

weight among all codons within each amino acid family.

Rwc ¼ wc

maxi2caa ðwiÞ
And therefore, the RtAI of a certain protein is the product of

weights Rw of each codon ik at the triplet position k throughout the

full gene length lg, and normalized by the length.

RtAI ¼
�Ylg

k¼1

Rwik

�1=1g

Supply-to-Demand Adaptation (SDA)

The SDA aims to consider not only tRNA abundances, but also the

codon usage demand. In doing so, it constitutes a global measure of

translation control, since the efficiency of a certain codon depends

both on its complementary anticodon abundance and the demand

for such anticodon by other transcripts. This global control has been

indeed established to play an important role in defining optimal

translation programs (Frumkin et al, 2018).

The definition of the SDA is based on similar previously published

metrics (Gingold et al, 2012; Pechmann & Frydman, 2013), which

consists of a ratio between the anticodon supply and demand. On the

one hand, the anticodon supply is defined as the relative tAI weights

Rw (see previous section). On the other, the anticodon demand is esti-

mated from the codon usage at the transcriptome level. It is computed

as the frequency of each codon in a transcript weighted by the corre-

sponding transcript expression and finally summing up over all tran-

scripts. Let c be a codon, then the codon usage is a weighted sum of

the counts of codon ci in gene j weighted by the mRNA-seq abundance

mRNAj for all genes in the genome g:

CUc ¼
Xg
j¼1

cijmRNAj

Similarly to the supply, the anticodon demand is then normalized

within each amino acid family:

Dc ¼ CUc

maxi2caa ðCUiÞ

Finally, the SDA weights (SDAw) are defined as the ratio

between the codon supply Sc and demand Dc:

SDAwc ¼ Sc
Dc

And therefore, the SDA of a certain protein is the product of

weights SDAw of each codon ik at the triplet position k throughout

the full gene length lg, and normalized by the length.

SDA ¼
�Ylg

k¼1

SDAwik

�1=1g

Gene set enrichment analysis (GSEA)
Gene sets derived from the GO Biological Process Ontology were

downloaded from the Molecular Signatures Database [v6.2]

(MSigDB) as a GMT file (Liberzon et al, 2015; Subramanian et al,

2005). We analyzed the enrichment of gene sets using the GSEA

algorithm (Subramanian et al, 2005). The score used to generate the

ranked list input is specified in the text for each analysis.

Survival analysis
To analyze how the supply-to-demand ratio of a certain codon

(SDAw) can affect the survival probability in cancer, patients of a

certain cancer type are divided in two groups of low/high SDAw,

which correspond to the patients having the top and bottom 40%

SDAw. The Kaplan–Meier curves are then computed to estimate the

survival probability of each group along time.

tRNA methylation and copy number
For consistency with the current version of publicly available and

pre-processed 450k DNA methylation and SNP6 segmented CNA

data from firebrowse, we used the human reference genome

GRCh37/hg19 (Genome Reference Consortium Human Reference

37, GCA_000001405.1) in this analysis. The coordinates of all

nuclear tRNA genes were obtained using tRNAscan-SE [v2.0] (Chan

& Lowe, 2019).

Regarding DNA methylation, we computed the average beta

value of each tRNA gene from 1.5 kb upstream of the transcrip-

tion start site (1500TSS) until the end of the gene. For CNA, we

retrieved the segmented data of precomputed log2(CN)–1 from

firebrowse and extracted the corresponding value for the

genomic coordinates containing the tRNA genes. Whenever the

tRNA genes were located between two segments, the weighted

average in function of the gene overlap with each segment was

computed.

Bisulfite sequencing methylation
As 1500TSS methylation of tRNA genes leads to an average coverage

of only 37% genes, we also analyzed the recently published bisulfite

sequencing data of 47 samples across nine cancer types (Table EV4;

Zhou et al, 2018). After retrieving the datasets from the GDC legacy

archive, given the higher resolution of bisulfite sequencing data, we

restricted the computation of the average promoter methylation of

tRNA genes to the GRCh37/hg19 genomic coordinates containing

the tRNA genes, since the promoter region of Pol-III-genes is

intragenic.

12 of 15 Molecular Systems Biology 16: e9275 | 2020 ª 2020 The Authors

Molecular Systems Biology Xavier Hernandez-Alias et al



Multiple linear regression (MLR)
We fitted a multiple linear regression (MLR) between the square-

root-normalized tRNA abundance (dependent variable) and the

promoter methylation and gene copy number (independent vari-

ables). To make all three layers of information comparable, we

considered only samples for which all data were available and

performed the regression at the isoacceptor level, thus averaging the

methylation and CNA data over all tRNA genes that shared the same

anticodon.

exp ¼ b0 þ bMeMeþ bCNACNA

We fitted the model parameters for all 64 isoacceptors and 22

cancer types, leading to 22 × 64 = 1,408 MLRs, among which only

significant coefficients (FDR-corrected t-statistic P-value < 0.05)

were considered in downstream analyses.

Statistical analysis

For hypothesis testing, an unpaired two-tailed Wilcoxon rank-sum

test was performed, unless stated otherwise. All details of the statis-

tical analyses can be found in the Results section. We used a signifi-

cance value of 0.05. In differential expression analyses, a false

discovery rate correction was used to account for multiple testing.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Scripts for analyzing tRNA data of TCGA: GitHub (https://

github.com/hexavier/tRNA_TCGA).

• Scripts for tRNA mapping: GitHub (https://github.com/hexavier/

tRNA_mapping).

• Generated TCGA data (tRNA abundances, SDA, CNA, and DNA

methylation): Synapse syn20640275 (www.synapse.org/tRNA_

TCGA).

• Hydro-tRNA and small RNA sequencing data of all five cell lines:

Gene Expression Omnibus GSE137834 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE137834).

Expanded View for this article is available online.
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