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Abstract Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but 
its role in cancer still remains to be fully elucidated. To understand the consequences of whole- 
chromosome- level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic, and 
proteomic data from hundreds of The Cancer Genome Atlas/Clinical Proteomic Tumor Analysis 
Consortium tumor samples. We found a surprisingly large number of expression changes happened 
on other, non- aneuploid chromosomes. Moreover, we identified an association between those 
changes and co- complex members of proteins from aneuploid chromosomes. This co- abundance 
association is tightly regulated for aggregation- prone aneuploid proteins and those involved in 
a smaller number of complexes. On the other hand, we observed that complexes of the cellular 
core machinery are under functional selection to maintain their stoichiometric balance in aneuploid 
tumors. Ultimately, we provide evidence that those compensatory and functional maintenance 
mechanisms are established through post- translational control, and that the degree of success of a 
tumor to deal with aneuploidy- induced stoichiometric imbalance impacts the activation of cellular 
protein degradation programs and patient survival.

Editor's evaluation
This paper will be of interest to the cancer biology community. The study leverages high- throughput 
genomic and proteomic data to evaluate the role of aneuploidy on functional pathway changes in 
cancer.

Introduction
Aneuploidy, whole- chromosome- or chromosome- arm- level alterations, affects expression of a large 
number of genes simultaneously - most directly by providing additional or diminished copies of genes 
in - or decreasing their transcription. Typically, aneuploidy is detrimental for normal cells, among other 
reasons as it causes stoichiometric imbalances in protein complexes involving proteins encoded on 
the aneuploid chromosome (Brennan et al., 2019; Santaguida and Amon, 2015a). However, around 
90% of solid tumors have aneuploid karyotypes (Ben- David et al., 2019; Taylor et al., 2018), raising 
the question of how cancer cells can tolerate the massive amount of transcriptomic and proteomic 
changes.

Previous studies demonstrated correlated expression between gene copy number and transcrip-
tome level for genes on aneuploid chromosomes while there is a buffering effect at the proteome level 
adjusting protein levels, especially for protein complex subunits (Stingele et al., 2012; Dephoure 
et  al., 2014). This post- transcriptional compensatory mechanism preventing excess translation 
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of complex members has also been characterized for copy number alterations (CNAs) in different 
contexts such as yeast (Ishikawa et al., 2017) and cancer (Gonçalves et al., 2017). Structural prop-
erties of proteins have an effect on the degree of post- transcriptional buffering on changes induced 
by CNAs, for example, proteins with larger interface size showed larger degree of buffering (Sousa 
et al., 2019). Recently, post- translational regulation has also been identified as a dosage compensa-
tion mechanism in response to aneuploidy in cancer cell lines (Schukken and Sheltzer, 2021).

Transcriptome analysis revealed that aneuploidy largely affects expression of genes on other chro-
mosomes too (Nawata et al., 2011; Upender et al., 2004). For CNAs, a correlated increase in the 
abundance of co- complex members encoded by genes outside the copy number amplified region 
has been shown (Gonçalves et al., 2017) raising the question of whether this could contribute to the 
expression changes in aneuploid cells even on diploid chromosomes. Together these results suggest 
the importance of compensation mechanisms to buffer differentially expressed transcripts in response 
to the amplification or loss of genomic regions and in particular to mitigate stoichiometric imbalances 
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Figure 1. Transcriptomic and proteomic changes in aneuploid tumors. (A) Data used in this study and schematic representation of the performed 
analyses. (B) Cancer- type- specific, whole- chromosome- level alterations across 32 cancer types. The color encodes the degree of their enrichment 
(standard residuals of the chi- square test multiplied by the alteration score [–1 in the case of deletion and 1 in the case of amplifications]). (C) Average 
percentage of differentially expressed genes or abundant proteins on aneuploid and other, non- aneuploid chromosomes (among the detected genes 
on the respective chromosomes).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Proteome data coverage and differential expression changes on other chromosomes.

https://doi.org/10.7554/eLife.75526
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in protein complexes. However, we still lack a global understanding on the effects of aneuploidy on 
the expression of genes on other, non- aneuploid chromosomes in a cancer context.

Here, we study transcriptomic and proteomic changes induced by aneuploidy in cancer patients 
(Figure  1A) and extend the scope of previous studies by focusing on expression and abundance 
changes on other, non- aneuploid chromosomes. We show that protein complex subunits of other 
chromosomes tend to maintain their abundance levels unless they form a complex with differentially 
abundant proteins encoded by genes located on the aneuploid chromosome. We further demon-
strate that this co- abundance regulation is dependent on aggregation propensity and promiscuity 
of the aneuploid complex partners and controlled by post- translational mechanisms. Our findings 
highlight a complementary mechanism acting to deal with the excess amount of expression changes 
induced by aneuploidy: Coordinated abundance changes of complex partners might prevent aggre-
gation of unpaired complex members.

Results
Widespread transcriptome and proteome deregulation in aneuploid 
tumors
To study the effect of whole chromosomal alterations on cancer transcriptomes and proteomes, we first 
identified cancer- type- specific, whole- chromosome- level amplifications and deletions that occurred at 
higher frequencies than would be expected by chance in 10,522  samples analyzed in The Cancer 
Genome Atlas (TCGA) by using a previously established cancer aneuploidy estimate (Taylor et al., 
2018). In total, we detected 203 whole- chromosome- level alterations including 86 amplifications and 
117 deletions for 32 cancer types (Figure 1B, Supplementary file 1). Then, for each detected aneu-
ploidy case, we split the set of samples into those containing the respective chromosome number 
aberration and those diploid for the respective chromosome and then tested for differential expres-
sion of all genes between the sets. We found that on average 41% and 48% of the genes located on 
amplified and deleted chromosomes, respectively, changed expression (Figure 1C). Besides those 
intuitively expected gene expression changes on the aneuploid chromosomes, we observed a surpris-
ingly large number of expression changes happening on other, typically diploid chromosomes (15 and 
18% of genes on average for amplification and deletion cases, respectively; Figure 1C).

We observed that often chromosomes tend to be co- amplified. We therefore tested for statistical 
dependence between amplification events of chromosomes. For the 86 cancer- type- specific amplifi-
cations, we identified 305 co- amplifications that occurred more frequently than expected by chance 
covering 60 out of 86 cancer- type- specific amplifications (adjusted p- value <0.01, chi- square test; 
Supplementary file 1). We wondered if this could explain the relatively high number of differentially 
expressed genes on other chromosomes. To test this, we quantified the contribution of each chro-
mosome to the transcriptional dysregulation by dividing the number of differentially expressed genes 
from each chromosome to the total number of genes on that chromosome. We then compared the 
average contribution of co- amplified chromosomes to that of non- co- amplified chromosomes across 
the 60 cancer- type- specific amplifications. We found that there is no significant difference between 
the medians of these chromosome groups (p=0.4, paired Wilcoxon test; Figure 1—figure supple-
ment 1B, C) suggesting that they do not substantially contribute to the overall transcriptional dysreg-
ulation on other chromosomes.

To further understand the effect of those expression changes in response to aneuploidy on the 
proteome, we collected corresponding proteome abundance data, which is available from the Clin-
ical Proteomic Tumor Analysis Consortium (CPTAC) for 298 TCGA tumor samples comprising breast 
(BRCA) (Cancer Genome Atlas Network, 2012; Mertins et al., 2016), ovarian (OV) (Cancer Genome 
Atlas Research Network, 2011; Zhang et  al., 2016), and colorectal adenocarcinoma (COREAD) 
(The Cancer Genome Atlas Network, 2012; the NCI CPTAC et al., 2014) cancer types. Then, for 
13 and 20 cancer- type- specific, whole- chromosome- level amplifications and deletions, respectively 
(found in above mentioned 3 cancer types), we detected protein abundance changes between aneu-
ploid samples (with the amplified/deleted chromosome) and diploid samples. We observed that a 
smaller number of proteins showed abundance changes compared to our observations at the tran-
scriptome level (after normalizing for the largely different gene coverage between the transcriptomics 
and proteomics datasets) both for amplification and deletion cases (Figure 1C).

https://doi.org/10.7554/eLife.75526
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One of the major consequences of aneuploidy is its impact on cell proliferation (Santaguida 
and Amon, 2015a). We, therefore, investigated the molecular pathways associated with frequently 
dysregulated genes and proteins of other chromosomes in aneuploid tumors. Indeed, we found gene 
ontology (GO) terms belonging to cell cycle and cell cycle processes to be among the top dysregu-
lated gene sets (Supplementary file 2).

Together these observations suggest that attenuation mechanisms are in place, and we observe 
regulation both on transcription and translation level which prevent that all genes located on the 
aneuploid chromosomes are deregulated. This effect is stronger on protein than on RNA level indi-
cating that on top of regulation of transcription, translation control or protein degradation might 
play a role. At the same time, we observed a surprisingly large number of dysregulation events on 
chromosomes other than the aneuploid one raising the question of the purpose of the up- and down-
regulation of hundreds of genes in response to specific aneuploidies.

Complex members tend to be co-deregulated
To test if the vast changes on the cellular proteome in aneuploid cells outside the aneuploid chro-
mosome could be explained by compensation mechanisms for changes in complex stoichiometry 
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Figure 2. Enrichment of partners of aneuploid proteins in differentially abundant proteins on other chromosomes. (A) Standard residuals and p- 
values for the overlap between co- complex members of differentially abundant proteins on aneuploid chromosomes and differentially abundant 
proteins on other chromosomes for 13 amplifications and 20 deletions. (B) Protein abundance correlations between differentially abundant proteins 
on aneuploid chromosomes and their co- complex and non- complex subunits. Correlations were calculated across cancer samples, separately for each 
cancer type, and then pooled. Wilcoxon test was used to determine whether two distributions are significantly different. (C) The number of protein- 
protein interactions (PPIs; n=701) between differentially abundant proteins of aneuploid chromosomes and those on other chromosomes against the 
background distribution for COREAD chromosome 7 amplification. (D) Standard residuals and p- values for the overlap between CORUM complex 
subunits and differentially abundant proteins on other chromosomes for 13 amplifications and 20 deletions.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Transcriptome- level changes on other chromosomes.

https://doi.org/10.7554/eLife.75526


 Research article      Cancer Biology | Computational and Systems Biology

Senger et al. eLife 2022;11:e75526. DOI: https:// doi. org/ 10. 7554/ eLife. 75526  5 of 19

induced by aneuploidy, we performed an association test between co- complex members of differ-
entially abundant proteins encoded on aneuploid chromosomes and differentially abundant proteins 
encoded on other chromosomes by using human complex information from the mammalian protein 
complex database CORUM (Giurgiu et al., 2019). We observed a general tendency for the differ-
entially abundant proteins of other chromosomes to be complex partners of differentially abundant 
proteins from the aneuploid chromosome for both whole- chromosome- level amplifications and dele-
tions (p<0.05, chi- square test; Figure  2A). We found a moderate percentage (in average 4.47%; 
Supplementary file 3) of differentially abundant proteins on other chromosomes being partners of 
those on aneuploid proteins. However, the coverage of proteins with CORUM complex information 
is rather limited (22% of proteins form part of at least one complex in CORUM). When only proteins 
participating in at least one complex were considered, the average fraction of partner proteins among 
differentially abundant proteins increased to 12.61% (Supplementary file 3). Moreover, comparing 
protein abundance correlations between differentially abundant proteins on aneuploid chromosomes 
and their co- complex members with non- complex members showed significantly stronger correlations 
between proteins of same complexes (p<2.2e- 16, Wilcoxon test; Figure 2B). Those observations are 
in line with previous findings claiming that complex organization shapes protein abundance changes 
in response to CNAs (Sousa et al., 2019).

To investigate whether our observations can be generalized to binary protein- protein interactions 
(PPIs), we used PPI data from the human PPI database HIPPIE (v2.2) (Alanis- Lobato et al., 2017) to test 
if the number of interactions between differentially abundant proteins encoded on the aneuploid and 
those on other chromosomes is higher than expected by chance. Indeed, we found an enrichment of 
interactions between those protein sets in 9 out of 13 cancer- type- specific amplifications and 8 of the 20 
deletions (p<0.05, randomization test; Figure 2C, Supplementary file 4). Given the higher coverage of 
PPI data, we asked again which percentage of differentially abundant proteins on other chromosomes 
could be potentially explained by their interactions with complex members on aneuploid chromosomes. 
We found that on average 27.5% of the differentially abundant proteins on other chromosomes interact 
with those on the aneuploid chromosomes (Supplementary file 4). For example, for chromosome 7 in 
COREAD and chromosome 12 in OV, more than 40%, and for chromosome 5 in BRCA, more than 30% 
of the differentially abundant proteins interacted with proteins on the amplified chromosomes.

We hypothesized that these abundance changes should only affect co- complex members of differ-
entially abundant proteins on aneuploid chromosomes, but that non- partner complex members should 
maintain their abundance level to prevent stoichiometric imbalances. To test this, we performed an 
association test for the overlap between differentially abundant proteins on other chromosomes and 
all known human complex members curated from CORUM. As a result of this, we found a significant 
depletion of complex subunits in differentially abundant proteins on other chromosomes for ampli-
fication cases (p<0.05, chi- square test; Figure 2D). This suggests that complex members overall are 
stably expressed to prevent disruption of complex stoichiometry upon chromosomal amplification. 
This effect was not observed in the case of chromosomal deletions in which differentially abundant 
proteins of other chromosomes are significantly enriched in complex proteins (p<0.05, chi- square test; 
Figure 2D).

In contrast to our observations at the proteome level where we observed a consistent pattern of 
enrichment for co- regulation of co- complex members, we observed both strong enrichments and 
depletions of co- complex members of proteins encoded by differentially expressed genes on aneu-
ploid chromosomes in the differentially expressed genes on other chromosomes (adjusted p- value 
<0.01, chi- square test; Figure  2—figure supplement 1A). In addition, we observed a significant 
enrichment of protein complex subunits among the differentially expressed genes on other chromo-
somes for 19 out of 28, and 20 out of 31 significant associations for amplification and deletion cases, 
respectively, at the transcriptome level (adjusted p- value <0.01, chi- square test; Figure  2—figure 
supplement 1B). The lack of consistency for co- regulation of co- complex members at the transcrip-
tome level suggests post- transcriptional compensatory mechanisms to control abundance changes 
induced by aneuploidy.

Epigenetic and transcriptional control cannot fully explain the 
dysregulation on other chromosomes
Previous studies have revealed the role of epigenetic and transcriptional regulatory mechanisms in 
cancer. Differential DNA methylation and dysregulation of transcription factors (TFs) mediate aberrant 

https://doi.org/10.7554/eLife.75526


 Research article      Cancer Biology | Computational and Systems Biology

Senger et al. eLife 2022;11:e75526. DOI: https:// doi. org/ 10. 7554/ eLife. 75526  6 of 19

gene expression in cancer (Baylin and Herman, 2000; Ehrlich, 2002; Bushweller, 2019). Thus, we 
further aimed to disentangle the different regulatory layers underlying expression changes (Figure 3A) 
on other chromosomes induced by aneuploidy. We first tested if those expression changes could be 
explained by epigenetic silencing via differential DNA methylation of the promoters of genes changing 
expression in aneuploid samples. Therefore, we compared average DNA methylation levels of differ-
entially expressed genes in aneuploid samples to diploid samples, separately for up- and downregu-
lated genes. We found that downregulated genes are significantly related to higher methylation levels 
in aneuploid samples in only 6 amplification cases out of 86 (~7%) and in 5 deletion cases out of 117 
(~4%; Figure 3—figure supplement 1A). We observed significant associations between lower meth-
ylation level and upregulated genes in aneuploid samples for few cases (10 out of 86 amplification 
cases and 16 out of 117 deletion cases) (Figure 3—figure supplement 1B). This suggests that epigen-
etic regulation does not have a substantial contribution to the described genome- wide changes in 
gene expression induced by aneuploidy.

We then asked if differential expression of TFs on the aneuploid chromosome could explain the 
large transcriptional changes on other chromosomes. We therefore tested for a large list of ENCODE 
gene- TF associations if there is an enrichment of targets of differentially expressed TFs on the aneu-
ploid chromosome among differentially expressed genes on the other chromosomes. Performing a 
randomization test did not reveal an excess of targets for any of the tested, cancer- type- specific chro-
mosomes (Figure 3—figure supplement 1C).

As a control, we computed the differentially expressed genes between tumor and healthy samples 
for 21 TCGA cancer types, where we have tumor vs normal samples. In those downregulated genes 
are often hypermethylated in cancer (Figure 3—figure supplement 2A) suggesting that DNA meth-
ylation plays an important role in regulating gene expression during carcinogenesis. Even though 
not significant we observed a higher number of targets of differentially expressed TFs among differ-
entially expressed genes for 76% of cancer types (Figure 3—figure supplement 2B) as compared 
to 62% in aneuploid tumors. In addition, we observed a higher absolute difference between the 
number of observed and expected targets in tumor vs normal samples (353.71 and 663.34, respec-
tively, for aneuploid tumors and tumor vs normal). Lastly, we tested the regulatory impact of the differ-
ential expression of the well- known cancer- related TF MYC on the expression of its target genes. We 
found MYC differentially expressed in 14 out of 21 cancer types, and in those cancer types its targets 
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Figure 3. Post- translational regulation of co- complex members of aneuploid proteins. (A) Overall representation of different levels of gene regulation. 
(B) Number of ubiquitination sites of all, human complex, and top positively and negatively correlated proteins. Wilcoxon test was used to test 
differences between groups. TF, transcription factors.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Expression changes on other chromosomes cannot be fully explained by transcriptional regulation.

Figure supplement 2. Transcriptional regulation on expression changes between tumor and normal, and of co- complex members of aneuploid 
proteins in aneuploid tumors.

https://doi.org/10.7554/eLife.75526


 Research article      Cancer Biology | Computational and Systems Biology

Senger et al. eLife 2022;11:e75526. DOI: https:// doi. org/ 10. 7554/ eLife. 75526  7 of 19

are significantly enriched among differentially expressed genes (p<0.05, chi- square test). Together 
these observations show that our measures of transcriptional regulation can capture some regulatory 
activity in cancer but the absence of signals in aneuploid tumors suggests that transcriptional regula-
tion cannot fully explain the expression changes on other chromosomes.

Post-translational regulation of partner co-abundance
We observed a stronger association between complex partner co- regulation on proteome as 
compared to transcriptome level (Figure 2A; Figure 2—figure supplement 1A) suggesting a central 
role for translational or post- translational regulation in maintaining complex protein abundance 
balance in aneuploid cells. To further validate this, we looked at the transcript levels of co- complex 
members of aneuploid proteins and asked if the corresponding changes could be explained by differ-
ential methylation or differential activation of TFs encoded on aneuploid chromosomes. Indeed, we 
did not observe an overall significant association further supporting the role of translational or post- 
translational mechanisms on co- abundance regulation (Figure 3—figure supplement 2C, D).

Previous studies have suggested that ubiquitination at multiple sites is an efficient signal for degra-
dation (Dimova et al., 2012) and further increase in the number of ubiquitination sites is related to 
higher binding affinity between protein and proteasome (Lu et al., 2015). We therefore hypothesized 
that post- translational ubiquitination of proteins could regulate co- abundance changes of partners 
of aneuploid proteins on other chromosomes. To test this, we retrieved ubiquitination data from 
PhosphoSitePlus (Hornbeck et al., 2015) and tested if top correlated co- complex members of aneu-
ploid proteins tend to have higher number of ubiquitination sites (as a proxy to identify proteins that 
can be more easily targeted for degradation). Indeed we found that top correlated partners have 
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(C) Co- occurrence frequency of differentially abundant proteins on aneuploid chromosomes and their co- complex members on other chromosomes in 
different correlation groups, positively and negatively correlated and non- correlated co- complex members of aneuploid proteins. Wilcoxon test was 
used to test the differences between groups.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Aggregation propensity of co- complex members of aneuploid proteins in the case of deletions.
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significantly higher numbers of ubiquitination sites (p<0.05, Wilcoxon test; Figure 3B). This suggests 
that a primary mechanism for keeping protein complex stoichiometry in check seems to be indeed 
post- translational regulation (such as ubiquitin- mediated degradation).

Differential protein abundance of complex partners as a compensatory 
mechanism to prevent complex imbalance and aggregation
The main expected detrimental effect of chromosomal amplifications is an excess of protein abundance 
of complex members leading to an aggregation of the orphan proteins (rather than a loss of function 
of the complex as would be expected for insufficient expression for complex assembly as a conse-
quence of chromosome deletion) (Santaguida et al., 2015b). We therefore tested if aggregation- 
prone proteins on the amplified chromosome show a higher tendency for strong correlations with 
their complex partners on other chromosomes. We grouped aneuploid proteins as aggregating and 
non- aggregating based on the data from Määttä et al., 2020 and compared their protein- level abun-
dance correlations with partners. Indeed, we observed stronger correlations for aggregation- prone 
proteins as compared to their non- aggregating counterparts (p<2.2e- 16, Wilcoxon test; Figure 4A). 
This suggests that upregulating the protein expression of genes on chromosomes not affected by 
aneuploidy themselves serves as a compensatory mechanism to prevent proteotoxicity triggered by 
the aggregation of non- paired complex members located on the aneuploid chromosome.

We hypothesized that in the case of chromosomal deletions, the aggregation propensity of down-
regulated proteins on the aneuploid chromosome should not affect the degree of correlation with 
complex partners. Indeed, we observed aggregation- prone proteins to be not related to stronger 
correlations with their complex partners on other chromosomes when they are encoded on deleted 
chromosomes (Figure 4A). This is likely the case as downregulating those proteins would not leave 
them as orphan subunits and hence increase their risk of aggregation. However, one would expect 
that aggregation propensity of co- complex members of downregulated proteins of the deleted chro-
mosomes should have an effect on the co- abundance correlations as this will leave them as orphan 
subunits. To test this, we compared the co- abundance correlation of proteins of deleted chromosomes 
with their aggregating co- complex members to non- aggregating ones. We found that deleted aneu-
ploid proteins have significantly stronger correlations with their aggregating co- complex members 
(p=0.045, Wilcoxon test; Figure 4—figure supplement 1).

Assuming that the regulation of proteins on other, non- aneuploid chromosomes serves to prevent 
stoichiometric imbalance of protein complexes, we speculated that for proteins that are in many 
complexes there are more ways of being abundance- compensated by a complex partner compared to 
those proteins participating in few complexes and therefore each single partner should be under less 
stringent control for co- expression with the aneuploid protein. We therefore classified each aneuploid 
protein into promiscuous (participating in more than five complexes) and non- promiscuous (involved 
only in five or less than five complexes). As expected, we observed weaker correlations for promis-
cuous proteins of amplified chromosomes (p=6e- 16, Wilcoxon test; Figure 4B) further supporting the 
model in which differential abundance of proteins on other chromosomes is a compensatory mech-
anism. We did not observe the same association in the case of chromosomal deletions (Figure 4B).

Finally, we hypothesized that proteins co- occurring in many complexes should show stronger 
correlation than proteins found only in a few cases together in the same complex. Indeed, we found 
significant differences in the number of times aneuploid proteins and their positively correlated 
co- complex members were found together in the same complex vs their uncorrelated or nega-
tively correlated co- complex members (p=2.2e- 12 and p=2.8e- 14 for chromosomal amplifications, 
p=0.004 and p=7.4e- 05 for deletions; Figure 4C). This, again, illustrates how complex organization 
shapes the co- abundance patterns between differentially abundant proteins from the aneuploid chro-
mosome and those located on other chromosomes.

Functional selection acting on protein stoichiometric imbalance
In the previous sections, we proposed that co- abundance change of protein complex partners is a 
compensation mechanism to prevent stoichiometric imbalance in protein complexes to avoid proteo-
toxicity of orphan subunits. We next wondered if besides biophysical (such as aggregation propensity) 
any functional properties would protect complexes and complex subunits from abundance imbalance 
in aneuploid cancer cells. To this end, we first retrieved the most strongly correlated co- complex 

https://doi.org/10.7554/eLife.75526
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members of differentially abundant aneuploid proteins and identified the complexes they are involved 
in. Then, we obtained functional annotations of the complexes from the CORUM database. To identify 
functions under stronger protection from protein abundance imbalance in complexes, we computed 
the enrichment of these functions compared to a random set of complexes under relaxed stoichiometric 
protection. The analysis revealed that top correlated proteins form complexes that are frequently 
involved in translation (mainly driven by ribosomal proteins; see Materials and methods section), RNA 
splicing, RNA processing, and protein complex assembly (Figure 5A; Supplementary file 6). Inter-
estingly, the functional enrichment is consistent for amplifications and deletions suggesting that not 
just compensatory mechanisms to prevent proteotoxicity contribute to the dysregulation of proteins 
on other chromosomes but also functional selection is in place, acting on important cancer- essential 
functions up- or downregulating entire protein complexes while keeping their stoichiometry in check.

To quantitatively compare the degree of enrichment between the functional terms associated with 
balance- protected complexes, we devised an enrichment score (see Materials and methods section) 
and compared it for the top enriched or depleted functions between amplifications and deletions. We 
observed that top correlations in the deletion cases are related to stronger enrichment scores when 
compared to their counterparts in the amplification cases (Figure 5B).

Phenotypic consequences of stoichiometric compensation success
The previous results suggest co- regulation of co- complex members as a compensation mechanism 
to balance protein abundance changes caused by whole chromosomal alterations and thus to keep 
protein complex stoichiometry in check. We reasoned that different tumors might be able to compen-
sate for the dysregulation of proteins on the aneuploid chromosome with a different degree of success 
and hypothesized that tumors that can better compensate for protein abundance changes will be 
associated with better survival rates while those that fail to compensate should upregulate compo-
nents of the protein degradation machinery to clear the cell from the orphan complex subunits. To test 
this, we first calculated a stoichiometry deviation score for each sample by using correlations between 
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co- complex members in aneuploid tumors as a measure of failure of keeping the complex stoichiom-
etry balance (Figure 6A). Then, we performed a survival analysis by grouping samples based on their 
stoichiometry deviation scores (Figure 6A). While not significant in every single case we observed a 
tendency that samples with low stoichiometry deviation scores are related to lower survival probabil-
ities in all three tissue types (Figure 6B) showing that compensation for protein abundance indeed 
provides a survival advantage to tumors.

We further investigated if the proteins that play a role in protein degradation have higher abun-
dances in the tumors that cannot compensate for abundance changes and thus have to deal with 
the excess amount of orphan subunits. We indeed found that ubiquitin- binding proteins and compo-
nents of the proteasome show significantly higher correlations between their abundances and the 
stoichiometry deviation scores in two out of three tissues (Figure 6C; Figure 6—figure supplement 
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Figure 6. Consequences of stoichiometric compensation. (A) Graphical representation for the calculation of stoichiometric deviation score for each 
sample (n=30 referring top 30 correlations). (B) Survival analysis results within each tissue. Survival analysis was done once with overall survival and once 
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The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Association between the deviation from complex stoichiometry and survival probability.
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1B), and this tendency still applies when samples are divided into amplification and deletion groups 
(Figure 6—figure supplement 1D). This likely is a consequence of proteotoxic stress resulting from 
the inability of some tumors to keep protein complexes balanced.

Discussion
Here, we conduct an extensive characterization of the transcriptome and proteome in aneuploid 
human cancers. We show that 47–63% and 24–33% of genes on aneuploid chromosomes show expres-
sion changes at the transcriptome and proteome level (Figure 1C), respectively. A similar degree of 
the effect of aneuploidy on expression changes has been previously found in human cancer cells: 50% 
and 25% of genes showed copy- number- correlated expression changes at the transcriptome and 
proteome level, respectively (Schukken and Sheltzer, 2021). In yeasts, aneuploidy affects a larger 
fraction of genes. Up to 70–80% of genes on aneuploid chromosomes changed levels of transcripts 
and proteins by the degree expected based on chromosome number (Dephoure et al., 2014; Gasch 
et al., 2016). The different degree of expression changes induced by aneuploidy depends on many 
factors including the cellular environment (Kojima and Cimini, 2019). However, independently from 
the study system, the stronger buffering at the proteome level than transcriptome level is consistently 
observed (Stingele et al., 2012; Dephoure et al., 2014). On the other hand, we find that genes on 
other chromosomes show a surprising degree of differential expression. Further, comparison of tran-
scriptome and proteome data reveals that proteomic changes from aneuploid chromosomes could 
primarily be explained by differential expression of their corresponding genes at the transcriptome 
level; however, this is not the case for proteomic changes of other, non- aneuploid chromosomes 
(in amplification cases, 76.5% and 26.2% of proteomic changes, and in deletion cases, 89.9% and 
36.2% of the differentially abundant proteins show also differential abundance of the corresponding 
transcript for aneuploid and other chromosomes, respectively). Together, these observations suggest 
different levels of control for dosage compensation for aneuploid and other chromosomes. Transcrip-
tional control plays a major role for aneuploid chromosomes while translational or post- translational 
control has a comparably stronger importance for gene regulation of other chromosomes.

We propose that a large fraction of differential expression events on other, non- aneuploid chromo-
somes might serve a compensatory purpose by binding aggregation- prone proteins upregulated due 
to their location on the aneuploid chromosome. We observe that up to 40% of the typically hundreds 
and sometimes more than 1000 differentially abundant proteins physically interact either in a complex 
or in a binary manner with their partners on the aneuploid chromosome. Given the still incomplete 
understanding of the nature of the human interactome (and in particular the limits on the available 
protein complex information), this is a remarkably high number. We expect that with an increase of 
protein complex measurements, this number will substantially grow.

This novel compensatory mechanism complements the previously described dosage compensa-
tion addressing the differential expression of complex subunits directly on the aneuploid chromo-
somes (Stingele et al., 2012; Schukken and Sheltzer, 2021). Together they might largely prevent the 
otherwise detrimental overexpression of orphan complex subunits. Correlated abundance patterns 
to compensate for aggregation- prone orphan proteins (differentially abundant aggregation- prone 
proteins of amplified chromosomes and aggregation- prone co- complex members of differentially 
abundant proteins of deleted chromosomes, respectively, for amplification and deletion cases) 
are detectable for both chromosome amplification and deletion cases. Furthermore, we observed 
stronger enrichments for specific, cancer- essential functions suggesting that here functional selection 
is a stronger driving force to shape the global co- abundance pattern. Among these terms, enrichment 
of translation is mostly driven by a relatively larger fraction of ribosomal genes among our gene sets 
(which might not be surprising given that 23% of the translation- related genes are ribosomal genes).

Similar compensatory mechanisms have been previously identified to be induced by focal CNAs 
(Gonçalves et al., 2017; Sousa et al., 2019). We demonstrate here that this observation holds for 
large genomic amplifications of entire chromosomes and likely serves the prevention of proteotoxic 
aggregation of orphan subunits as suggested by the stronger abundance correlations formed by 
aggregation- prone proteins. Considering that around 90% of solid tumors are aneuploid, our work 
addresses the question of how the vast gene expression changes induced by the amplification of large 
genomic regions can be tolerated by the majority of cancer cells.

https://doi.org/10.7554/eLife.75526
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One surprising observation is the presence of strong negative correlations between aneuploid 
proteins and co- complex partners on other chromosomes. We could not substantiate our initial intu-
ition that those could be indicative of protein- binding competition relationships. We used different 
approaches to predict overlap in protein- binding interfaces to estimate competition events but did 
not observe an agreement with the negative abundance correlations. Future research will need to 
clarify the reason for the existence of the negative correlations.

Our findings describe the need for compensation mechanisms to deal with stoichiometric imbal-
ances in protein complexes induced by aneuploidy and highlight the role of components of protea-
some complex and ubiquitin- binding proteins in keeping the complex stoichiometry and better tumor 
fitness. It has been shown that targeting essential genes in aneuploid cells eventually results in prolif-
eration defects and activation of cell death pathways (Cohen- Sharir et al., 2021). Taken together, our 
results could serve for the identification potential drug targets for clinical use. Ultimately, given the 
high number of aneuploid tumors, studying and understanding compensatory mechanisms and the 
potential vulnerabilities they create in aneuploid tumors will have profound implications for both basic 
cell biology as well as cancer biology.

Materials and methods
Calculating whole-chromosome-level aneuploidy scores
Arm- level aneuploidy scores for 10,522 TCGA samples, comprising 33 cancer types, were obtained 
from Taylor et al., 2018. Whole- chromosome- level aneuploidy scores were calculated as follows: If 
both p and q arms for chromosomes 1–12 and 16–20 are amplified, deleted, or not changed, the entire 
chromosome was considered as amplified, deleted, or diploid, respectively. For acrocentric chromo-
somes, 13–15 and 21–22, q arm aneuploidy scores were considered as representative for whole- 
chromosome- level aneuploidy scores (Supplementary file 1). TCGA samples that have conflicting 
events (amplification, deletion, or no change) on different arms or missing data for one or both arms 
were removed from further analyses. In this study, colon (COAD) and rectum adenocarcinoma (READ) 
were considered as one cancer type as COREAD.

Detecting cancer-type-specific whole-chromosome-level aneuploidies
Chi- square test was performed to test the occurrence of a whole- chromosome- level aneuploidy within 
each cancer type against random expectation. Then multiple testing correction was applied on the 
p- values by using Holm’s method. Cancer- type- specific, whole- chromosome- level aneuploidies were 
selected based on the criteria that adjusted p- value lower than or equal to 0.05 and chi- square stan-
dard residual equal to or higher than 2, resulting in 86 and 117 whole- chromosome- level amplifica-
tions and deletions, respectively (Supplementary file 1).

For each of the 86 cancer- type- specific amplifications, co- amplification frequency with other chro-
mosomes was tested by using chi- square test. Then multiple testing correction was applied on the 
p- values by using Holm’s method. 305 significant combinations were identified as co- amplified events 
in 60 out of the 86 cancer- type- specific amplifications based on the criteria that the adjusted p- value 
was lower than 0.01 (Supplementary file 1). Then the contribution of each chromosome to the tran-
scriptional dysregulation on other, non- aneuploid chromosomes was calculated as the percentage of 
differentially expressed genes by dividing the number of differentially expressed genes to the total 
number of genes on that chromosome. A paired Wilcoxon test was used to compare mean contribu-
tion of co- amplified chromosomes to that of non- co- amplified chromosomes across 60 cancer- type- 
specific events.

Data processing
RNA- seq fragments per kilobase of exon per million reads mapped (FPKM) values for 11,007 TCGA 
samples, comprising 32 cancer types, were downloaded from the NCI Genomic Data Commons (GDC) 
(Grossman et al., 2016). Then FPKM values were converted to transcripts per million (TPM) values, 
and primary tumor samples (n=9830) were selected. Ensembl gene IDs were mapped to gene symbols 
based on the mapping obtained from ensembl BioMart (Human genome version GRCh38.p13 - down-
loaded on May, 2019) (Howe et al., 2021), and the mean value was taken when multiple Ensembl 

https://doi.org/10.7554/eLife.75526
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IDs mapped to one gene symbol. Mitochondrial and non- expressed (zero values in all samples) genes 
were removed.

Proteomics data used in this publication were generated by the CPTAC (NCI/NIH). Proteomics 
measurements for the available TCGA projects were downloaded from the CPTAC, covering three 
cancer types, spectral counts for COREAD (The Cancer Genome Atlas Network, 2012; the NCI 
CPTAC et al., 2014) (90 samples and 5561 genes), and relative abundances for OV (Cancer Genome 
Atlas Research Network, 2011; Zhang et  al., 2016) (174 samples and 7169 genes), and BRCA 
(Cancer Genome Atlas Network, 2012; Mertins et al., 2016) (105 samples and 10,625 genes). For 
the replicated samples, the mean value was considered. Primary samples covered by the transcrip-
tomic data and genes that are expressed at transcriptome level (genes having TPM value in at least 
one sample) were selected, which gave us 88 samples and 5353 genes, 119 samples and 7062 genes, 
105 samples, and 10,467 genes for COREAD, OV, and BRCA, respectively (Figure 1—figure supple-
ment 1A). Spectral counts for COREAD were normalized by quantile normalization followed by log2 
transformation.

Detecting transcriptomic and proteomic changes
To detect transcriptomic and proteomic changes, samples covered by aneuploidy, transcriptomic, 
and proteomic data were selected, which resulted in 9266 samples for transcriptome analysis and 
298 samples for proteome analysis.

For each of the 203 cancer- type- specific, whole- chromosome- level aneuploidies covering 86 ampli-
fications and 117 deletions, we first grouped TCGA samples as the ones with chromosome amplifica-
tion/deletion and the ones diploid for the respective chromosome. After selecting the samples, genes 
having zero TPM in all samples were filtered out. Differentially expressed genes between the samples 
with diploid and those with an altered chromosome were identified by using Wilcoxon test (we consis-
tently used Wilcoxon test to identify transcriptomic and proteomic changes to avoid detection biases 
introduced by applying different methods to different data types) and then multiple testing correction 
was performed on the p- values by using the Benjamini and Hochberg method. Significantly, differ-
entially expressed genes were selected based on the criteria that the adjusted p- value is lower than 
0.1. For the cases where we were left with less than 250 differentially expressed protein coding genes 
after adjusted p- value cutoff, the uncorrected p- value was used (p<0.05) in order to have a sufficient 
number of genes to perform the enrichment tests (described below).

For the 13 cancer- type- specific, whole- chromosome- level amplifications and 20 cancer- type- 
specific, whole- chromosome- level deletions covering COREAD, OV, and BRCA cancer types, for 
which the corresponding proteome data is available, differentially abundant proteins between the 
samples with diploid- and amplified/deleted chromosome were detected by using Wilcoxon test. 
Proteins with a p- value lower than 0.1 were considered as significantly differentially abundant (again, 
using a relaxed statistical cutoff in order to perform the subsequent analyses of the protein set).

To dissect frequently dysregulated genes in aneuploidy and their associated molecular functions, 
we, first, counted how many times a gene was dysregulated across different aneuploidy cases (203 
and 33 detected cancer- type- specific, whole- chromosome- level aneuploidies, respectively, for tran-
scriptomic and proteomic data). Then we performed GO analysis on the most frequently dysregulated 
150 genes in amplification and deletion cases by using WebGestalt (Liao et al., 2019). The GO anal-
ysis was performed separately for the gene sets from transcriptomic and proteomic data. All protein 
coding genes were used as a background.

Grouping proteins and protein pairs
Aggregation- prone proteins (n=300) were obtained from Määttä et  al., 2020. The known human 
protein complexes (n=2916) were downloaded from the CORUM database (Giurgiu et  al., 2019) 
(CORUM 3.0; September, 2018). The number of complexes a protein is involved in was calculated 
by considering the CORUM complexes, and then proteins were grouped as promiscuous if they are 
involved in more than five complexes, otherwise as non- promiscuous. To calculate co- occurrence 
frequencies, for each protein pair, we first counted the number of complexes in which the two proteins 
were found together and then divided it by the number of complexes in which at least one of them 
is found.

https://doi.org/10.7554/eLife.75526
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Statistical analyses
Chi- square test was used to assess the relationship between differentially abundant proteins on other 
chromosomes and (i) complex members obtained from the CORUM database, and (ii) co- complex 
members of differentially abundant proteins on aneuploid chromosomes for the 13 cancer- type- specific 
amplifications and 20 deletions. The same association tests were repeated by using transcriptome- 
level changes - differentially expressed genes on other chromosomes - for 86 amplifications and 117 
deletions, and then multiple testing correction was performed (only for transcriptome- level analysis as 
here a much larger number of tests was performed) on p- values by using Holm’s method.

Cancer- type- specific protein abundance correlations were calculated between all possible pairs 
across primary tumor samples for the cancer types BRCA, COREAD, and OV (for which we have 
proteomic measurements) by using the Spearman method. Comparing correlations between co- com-
plex members and non- complex members was done by considering differentially abundant proteins 
on aneuploid chromosomes and their correlations with all CORUM complex subunits. The Wilcoxon 
test was used to compare the correlation distributions. To this end, correlations from three cancer 
types were pooled.

To compare the protein- level correlations between different protein feature groups, correlations 
between differentially abundant proteins on aneuploid chromosomes (the ones that showed an 
increase in abundance for amplifications or a decrease for deletions) and their co- complex members 
were considered. To obtain a unique set, correlations from three cancer types were pooled. For the 
pairs for which we could compute a correlation in more than one cancer type, the maximum correla-
tion value was considered, which left us with 2772 and 3818 correlations for amplifications and dele-
tions, respectively (Supplementary file 5).

Network randomization
To assess if there is an enrichment between differentially abundant proteins encoded on the aneu-
ploid and those on other chromosomes, we employed a randomization test. We retrieved PPI data 
from HIPPIE (v2.2) (Alanis- Lobato et al., 2017) and counted the number of physical PPIs between 
the two protein sets. In each randomization, we replaced the set of aneuploid differentially abundant 
proteins by a protein set of equal size. To avoid biases, we additionally enforced the same degree 
distribution as in the original set by replacing each differentially abundant aneuploid protein by a 
protein of the same or similar degree (forming as many interactions as the replaced protein). We then 
recounted the number of PPIs between the random set and differentially abundant proteins encoded 
on other chromosomes to construct a background distribution from which we estimated the p- value 
by counting how often the original observed value was smaller than or equal to a randomized value 
(Supplementary file 4).

Functional annotation of protein complexes
To investigate functional relevance of co- abundance regulation, we first classified abundance correla-
tions between differentially abundant proteins of aneuploid chromosomes and their co- complex 
members of other chromosomes into two groups: Top correlated ones including 20 strongest posi-
tive and negative correlations (40 in total) and non- correlated ones including correlations between 
–0.2 and 0.2. The latter was used as background in the association test. Then we obtained protein 
complexes and their functional annotations - associated GO terms - from the CORUM human protein 
complex data. For each GO term, a chi- square test was performed in which the number of complexes 
related to the corresponding term in the top correlated group was tested against that of in the 
background group. An enrichment score was calculated by dividing the difference of the observed 
complex number and the expected one obtained from the chi- square test by the square root of the 
expected value. GO terms with p- value lower than 0.05 were considered as significantly associated. 
The analysis was done separately for each detected cancer- type- specific aneuploidy case (13 amplifi-
cations and 20 deletions covering BRCA, OV, and COREAD cancer types for which we have proteomic 
measurements).

As we observed an enrichment of post- transcriptional- and translation- related functions, which 
often involve larger complexes, we further aimed to test how much this enrichment is driven by 
larger complexes and a large number of ribosomal genes. To end this, we repeated the test for 
functional enrichment once after removing ribosomal genes downloaded from the HGNC database 
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(Tweedie et al., 2021), and once after removing large complexes (complexes that include more than 
10 subunits). This did not change the results much indicating that the observed enrichment did not 
depend on large complexes only.

DNA methylation analysis
Promoter- level methylation measurements calculated from probe- level methylation data in TCGA 
were used in this analysis (Heery and Schaefer, 2021). For each gene, the most upstream promoter 
was considered for the analysis. Average methylation level of genes was calculated by taking the 
mean of methylation levels across aneuploid samples and diploid samples, separately. Wilcoxon tests 
were performed for the statistical comparison between up- and downregulated genes.

TF - target randomization test
To test if differential expression of TFs on aneuploid chromosomes could explain the vast expres-
sion changes on other chromosomes, we performed a randomization test for 203 detected cancer- 
type- specific aneuploidies. We first retrieved 1651393 ENCODE gene- TF associations detected by 
ChIP- Seq experiments from the Harmonizome database (ENCODE Project Consortium, 2004; Rouil-
lard et al., 2016) and then counted the number of targets of differentially expressed TFs on aneuploid 
chromosomes among differentially expressed genes on other chromosomes. To compute a back-
ground distribution, we recounted the number of targets for random TF sets for 100 iterations. In 
each iteration, the random TF set size was equal to the number of differentially expressed TFs on the 
aneuploid chromosome of the corresponding cancer- type- specific aneuploidy case. The p- value was 
calculated using the background distribution by conducting a two- tailed test.

To quantify the degree of TF regulation on the transcript changes of co- complex members in 
aneuploid tumors, we counted the number of targets among differentially expressed co- complex 
members of aneuploid proteins on other chromosomes. The aneuploidy cases in BRCA, COREAD, 
and OV (where we have both transcriptomic and proteomic data) were considered for the analysis to 
make the results comparable. To test the degree of TF regulation on overall dysregulation in tumor vs 
normal, targets were counted among all dysregulated genes in tumor vs normal.

Ubiquitination analysis
Experimentally observed ubiquitination sites for human proteins were downloaded from Phospho-
SitePlus (Hornbeck et al., 2015). The unique set of abundance correlations between differentially 
abundant proteins of aneuploid chromosomes and their co- complex members of other chromosomes 
was used for this analysis (See Materials and methods section: Statistical analyses; Supplementary 
file 5). For each co- complex member protein, the total number of ubiquitination sites was calculated 
as the sum of all ubiquitination sites. The proteins not covered by the ubiquitination dataset were 
removed from the analysis. Abundance correlations equal to or higher than 0.4 and lower than or 
equal to –0.4 were considered as top positive and top negative correlations, respectively. Wilcoxon 
test was used for statistical comparison.

Calculation of the stoichiometry deviation score and survival analysis
To calculate the stoichiometry deviation score for each TCGA sample, the top 30 strongest tissue- 
specific correlation pairs (aneuploid protein and its partner) in amplification cases were taken. For 
each pair, a linear regression model was performed in which protein abundance of partner protein was 
dependent variable, and that of aneuploid protein was independent variable. Then the stoichiometry 
deviation score of a sample was calculated as the mean of absolute residuals in the regression models.

To perform survival analysis, we first grouped samples into two sets (high and low) based on their 
stoichiometry deviation scores by using the survminer package (version 0.4.8) in R, which is using 
the maximally selected rank statistics to determine the optimal cutpoint. Samples with the deviation 
scores lower than or equal to the cutpoint were assigned as the low group; otherwise they were 
assigned to the high group (Figure 6—figure supplement 1C). Then, we performed survival analysis 
once with overall survival and once with disease- free survival by using Kaplan Meier method in the 
survival package (version 3.1.8) in R.

GO annotations were retrieved from the UniProt database, and proteins with GO terms related 
to proteasome complex and ubiquitin- binding were selected. Then, the correlation between protein 

https://doi.org/10.7554/eLife.75526


 Research article      Cancer Biology | Computational and Systems Biology

Senger et al. eLife 2022;11:e75526. DOI: https:// doi. org/ 10. 7554/ eLife. 75526  16 of 19

abundances and stoichiometry deviation scores was calculated once across all samples and once 
for amplification and deletion groups, separately by using the Spearman method. Samples were 
separated into amplification and deletion groups if they are with at least one detected cancer- type- 
specific chromosomal amplification and deletion, respectively. Then, the Wilcoxon test was used for 
the comparison.

Availability of data and materials
The code performing all analyses in this study is available at https://github.com/SengerG/Coregu-
lation-of-complexes-in-Aneuploidtumors.git, (copy archived at swh:1:rev:b9ef349854c073044c2ecb-
f743819e12abb17923, Senger, 2022).
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