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Negative selection in tumor genome
evolution acts on essential cellular
functions and the immunopeptidome
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Abstract

Background: Natural selection shapes cancer genomes. Previous studies used signatures of positive selection to
identify genes driving malignant transformation. However, the contribution of negative selection against somatic
mutations that affect essential tumor functions or specific domains remains a controversial topic.

Results: Here, we analyze 7546 individual exomes from 26 tumor types from TCGA data to explore the portion of the
cancer exome under negative selection. Although we find most of the genes neutrally evolving in a pan-cancer
framework, we identify essential cancer genes and immune-exposed protein regions under significant negative
selection. Moreover, our simulations suggest that the amount of negative selection is underestimated. We therefore
choose an empirical approach to identify genes, functions, and protein regions under negative selection. We find that
expression and mutation status of negatively selected genes is indicative of patient survival. Processes that are most
strongly conserved are those that play fundamental cellular roles such as protein synthesis, glucose metabolism, and
molecular transport. Intriguingly, we observe strong signals of selection in the immunopeptidome and proteins
controlling peptide exposition, highlighting the importance of immune surveillance evasion. Additionally, tumor type-
specific immune activity correlates with the strength of negative selection on human epitopes.

Conclusions: In summary, our results show that negative selection is a hallmark of cell essentiality and immune
response in cancer. The functional domains identified could be exploited therapeutically, ultimately allowing for the
development of novel cancer treatments.
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Background
The evolution of human cancers is similar in nature to
the evolution of non-recombining unicellular microor-
ganisms [1, 2]. The hallmarks of evolution include posi-
tive selection towards increasing the frequency of
tumor-beneficial mutations and negative selection to-
wards preventing the accumulation of harmful ones.
Since the early 1970s, studies have explored an
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evolutionary model of tumor development focusing on
the role of positive selection to identify genes that are
relevant for malignant transformation and tumor pro-
gression [3, 4]. Somatic mutations conferring a selective
advantage affect specific cellular pathways and processes
involving cancer hallmarks such as increased prolifera-
tive capacity, suppression of cell cycle control, and es-
cape from immune surveillance [5].
Recent cancer studies have identified cancer-causing

or driver genes by detecting signals of positive selection
[6, 7]. Through large-scale sequencing of cancer pa-
tients, the International Cancer Genome Consortium
(ICGC) and The Cancer Genome Atlas (TCGA) initia-
tives have made thousands of cancer exomes available
[8–11]. Consequently, methods exploiting data from
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these initiatives have revealed an extensive landscape of
somatic point mutations in driver genes across tumor
types (mutational drivers). The number of cancer genes
undergoing positive selection of somatic point mutations
identified by in silico approaches is in the range of ap-
proximately 100–500 [6, 12–14].
The existence of negative selection acting on cancer

genomes is a highly controversial topic: several studies
have questioned the presence of strong negative selec-
tion [15–17]. In particular, a recent study concluded that
negative selection would be almost undetectable outside
homozygous loss of essential genes [18]. This is surpris-
ing given that cancer essentiality screens have identified
fitness altering genes even in diploid regions or incomplete
knockdown conditions [19]. Accordingly, negative selec-
tion has been identified in particular regions or domains:
e.g. in transcription factor binding motifs [20]; membrane
proteins [21]; against nonsense mediated decay-inducing
mutations in onco- and essential genes [22]; in splicing-
associated sequences [23]; and within hemizygous regions
[24]. Such recent experimental and computational identifi-
cation of cancer vulnerabilities raises the question of why
exome-wide approaches employing tools from the field of
population genetics [17, 18] have only identified a small
number of negatively selected genes?
On one hand, the recessive nature of novel deleterious

mutations prevent negative selection from acting in
most genes [18, 25], low synonymous mutation rates
make positive selection more easily detectable when test-
ing against neutrality than negative selection [26], and
mutational data availability forces the use of specialized
approaches dealing with noise in hypomutated regions
[17]. On the other hand, germline variants erroneously
labelled as somatic mutations [18] and mutational pro-
cesses could introduce technical bias [27], thereby falsely
suggesting negative selection. Here, we have developed a
method that uses dN/dS, the ratio of non-synonymous
substitutions to synonymous substitutions per site, to
detect genes under selection [28]. We present a compre-
hensive study that addresses the extent and global prop-
erties of negative selection across tumor types using
strictly filtered whole exome sequencing data. Notably,
functional properties of negative selection in tumor evolu-
tion become evident when a relaxed empirical cut-off for
selection is used. Finally, we demonstrate that immune-
mediated negative selection (1) acts on the MHC-exposed
regions of native epitopes and (2) correlates with the cyto-
lytic activity across tumor types.

Results
A somatic substitution bias-corrected dN/dS measure
reveals negative selection in cancer exomes
To identify genes under negative selection in cancer we
analyzed 7546 individual samples across 26 tumor types
(Pancan26, Additional file 1: Table S1) using a somatic
substitution bias (SSB)-corrected dN/dS measure (SSB-
dN/dS). Our method corrects dN/dS using a model of
seven somatic-specific substitution frequencies (Fig. 1,
see “Methods”). Based on the SSB-dN/dS values, we ap-
plied a stringent statistical test revealing 39 genes under
exome-wide significant selection [29] (Q < 0.1, Table 1,
Additional file 2: Table S2). Among the 39 significantly
selected genes, we found 14 to be under positive selec-
tion and 25 to be under negative selection (Table 1,
Additional file 1: Table S3). All 14 of the significant posi-
tively selected genes were previously found as being fre-
quently mutated in cancer. Given the 100s of known
cancer genes under positive selection, we wondered if
the high precision comes at the price of low recall. In-
deed, upon comparing the precision and recall to a pre-
viously published gold standard of cancer drivers [30],
we found that only a substantial relaxation of the false
discovery rate (FDR) cut-off leads to a recovery of most
known cancer drivers (Additional file 3: Figure S1).
Therefore, to test if the number of negatively selected
genes was also underestimated we simulated sets of
negatively selected genes (Additional file 4). In a dataset
of one million somatic mutations, similar to the pan-cancer
dataset used, our simulation estimated a recall of ~ 34% for
negatively selected genes (Additional file 3: Figure S2).
Thus, we expect the total number of negatively selected
genes in the pan-cancer analysis to be ~ 75. We also noted
that at least 3 million somatic mutations are necessary to
reach a recall of 75%.
To assess our SSB-correction strategy, we confirmed

that the aggregated value of SSB-dN/dS across all genes
(global dN/dS) was close to one for every type of tumor
(Additional file 1: Table S4), with only mildly inflated P
values (Additional file 3: Figure S3), and in agreement
with previous observations [31]. In comparison, results
obtained without correcting for mutation signature
showed strongly inflated P values. SSB correction im-
proved results for most types of tumors, notably for skin
melanoma in which the C- > T signature is the most
dominant substitution (Additional file 3: Figure S3). We
next asked if expanding our initial SSB-correction strategy
using seven substitution types (SSB7) to a model account-
ing for the full trinucleotide sequence context of the mu-
tation and the strand (SSB192) would further improve the
results (see “Methods”). To this end, we repeated the
simulation of genes under selection to estimate precision
and recall for SSB7 and SSB192 (Additional file 3: Figures
S2 and S4, Additional file 4). We found no significant per-
formance gain for the identification of negatively selected
genes and only a slightly improved precision for the
identification of positively selected genes using SSB192
(Additional file 3: Figure S2). In addition, distributions of
dN/dS values per gene for SSB7 and SSB192 methods were



a
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Fig. 1 Discovery of negatively selected genes. Schematic workflow for using ICGC/TCGA data to detect negatively selected genes. a Workflow for
calculating dN/dS using counts of somatic mutations and the human coding sequence without using a substitution model. b Descriptive values
using mutational data to correct for mutation frequencies. The substitution model exemplified uses seven substitution types, but any other
model could be implemented. The observed frequency of substitutions is used to correct for the expected number of sites in all transcripts to
calculate a corrected value of dN/dS (SSB- dN/dS)
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highly correlated (r = 0.98) and both have a mean and me-
dian close to one (Additional file 4: Figure S4). Thus, in
our study we refer to SSB7-dN/dS values simply as SSB-
dN/dS.
A recent study claimed that negative selection in

tumor evolution is almost absent [18]. Since both
methods used in that study, dNdScv and dNdSloc, and
our SSB-dN/dS use dN/dS to detect selection, we
compared them using the same pan-cancer dataset. We
found that per-gene dNdScv-dN/dS and dNdSloc-dN/dS
estimates were well correlated to SSB-dN/dS values (r =
0.62 / 0.7, Additional file 3: Figure S5A and B) and this
correlation was even higher in the set of significant
genes (dNdScv to SSB-dN/dS, r = 0.97). Nonetheless, we
observed that the median of dNdScv-dN/dS values per
gene differ from the dNdScv-dN/dS value across all genes
(global dN/dS, Additional file 3: Figure S5C), whereas the
median of SSB-dN/dS values was similar to the global es-
timate. In addition, the median of dNdScv-dN/dS values
was higher than the median of SSB-dN/dS values and
had more genes under significant positive selection in
the former. Such discrepancy was amplified when look-
ing at individual tumor types separately (Additional file 3:
Figure S6), hinting at a relationship between the number
of mutations considered and the power to detect genes
under selection. To further investigate the impact of the
number of somatic mutations on the performance of each
method, we simulated a neutral dataset. We ran the
methods on four datasets having 100 K, 300 K, 500 K, and
1 M mutations (Additional file 3: Figure S5D). As expected
under neutrality, the global dN/dS value for all methods was
approximately one. The median dNdScv-dN/dS was higher
than one confirming an overestimation of the per gene
dNdScv-dN/dS values. In comparison, SSB-dN/dS values
were tightly distributed around the exome-wide estimate
with improving concordance for larger number of analyzed
variants, hence increasing the power for detecting negative
selection. Additionally, we compared SSB-dN/dS results to a
recently published Bayesian approach (CBaSe) for detection
of genes under selection [17]. We observed that there is a
good agreement between genes detected as being under
positive or negative selection by CBaSe and our method
(Additional file 3: Figure S7). When running CBaSe on our
pan-cancer dataset, five out of nine genes detected as
significant by CBaSe were also detected as significant by
SSB-dN/dS (BCL2L12, TERT, AP2S1, KRI1, TMEM214).



Table 1 Genes under significant selection

Gene name dN/dS Q value

AP2S1 0.043 0.0107

BCL2L12a 0.093 0.0001

RALBP1 0.121 0.0738

CLDN9 0.126 0.0625

GTSF1Lb 0.178 0.0501

ZDHHC3 0.255 0.0625

DECR1 0.286 0.0341

HLA-DOA 0.291 0.0581

TMEM214 0.328 0.0408

GRID2IPa 0.331 0.0107

DAGLB 0.338 0.0241

GFRA3 0.351 0.0532

TERT 0.368 0.0007

KRI1 0.372 0.0408

ZBTB7C 0.379 0.0073

NPSR1 0.404 0.0241

AP1B1 0.41 0.0387

WISP1 0.421 0.0408

MCM2 0.434 0.0581

XKR6 0.471 0.0802

CYFIP1 0.475 0.0317

TYK2 0.521 0.0802

EPPK1 0.591 0.0073

CACNA1S 0.625 0.0632

TECTAb 0.626 0.0209

FGFR2 2.36 0.0802

ERBB3 2.523 0.0428

KEAP1 2.701 0.048

CTNNB1 3.344 0

SMAD4 3.976 0.0387

PTEN 4.756 0

FBXW7 5.577 0

HRAS 5.636 0.0802

PIK3CA 5.928 0

SPOP 6.89 0.0016

BRAF 9.782 0

TP53 10.304 0

IDH1 21.589 0

KRAS 25.681 0

Genes with dN/dS < 1 are under negative selection
aGenes with signals of negative selection potentially influenced by germline
variants or positive selection on silent mutations: GRID2IP has 17 synonymous
somatic mutations having an EXAC allele frequency > 0.001, BCL2L12 has a
silent mutation cluster.
bNot significant after removing non-diploid regions
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Nevertheless, the other four significant genes found by
CBaSe, and not found by SSB-dN/dS, had SSB-dN/dS values
smaller than one.

Negative selection in the context of functional impact
and redundancy
Genes under positive selection in cancer, also called can-
cer driver genes, show a bias towards the accumulation
of high functional impact mutations [6, 7, 32]. We hy-
pothesized that genes under negative selection show a
bias towards the depletion of high functional impact
mutations, and that those genes not influenced by selec-
tion do not show any bias. In other words, we expect
that mutations strongly altering protein function in a
gene under negative selection would be removed from
the host genetic pool because they will hinder tumor
proliferation and thus these genes will only tolerate low
or no functional impact mutations. To test this hypoth-
esis, we obtained Combined Annotation-Dependent De-
pletion (CADD) functional impact scores of somatic
mutations [33] in genes without any evidence of selec-
tion, genes under strong negative selection, and genes
under strong positive selection. We observed that genes
displaying a low SSB-dN/dS ratio (from now on dN/dS,
unless otherwise specified) were depleted in high func-
tional impact mutations compared to those of neutral
and positively selected genes (see Fig. 2a.). Moreover, we
found that a higher dN/dS threshold increased the mean
functional impact score irrespective of the method used
to calculate dN/dS (Fig. 2b). In line with our conclusion
that stringent statistical filtering likely underestimates
the amount of negatively selected genes, we found that
only for dN/dS cut-offs above ~ 0.5 the mean functional
impact score converges towards those of non-selected
genes (Fig. 2b). Therefore, we focused in the analyses of
functional and phenotypic properties of negatively se-
lected genes on genes with dN/dS < 0.5 (668 genes if only
genes with > 10 mutations are considered) or on how
gene properties behave as a function of dN/dS.
Compared to single-copy genes, a lower number of the

genes that have paralogs are essential in yeast [34] and
humans [35]. It is assumed that paralogs provide redun-
dancy and compensate for gene loss, thus leading to re-
laxed negative selection in organismal evolution [36, 37].
We therefore investigated if there are differences in
negative selection between genes with and without du-
plicates. Indeed, we observed that genes without para-
logs undergo stronger negative selection than genes with
paralogs (P < 10–16; Mann–Whitney U test; when
considering all genes with dN/dS < 1). Moreover, we
observed that genes without paralogs are associated with
a smaller dN/dS ratio than genes having one paralog
(Fig. 2c; P < 10–5; Mann–Whitney U test) and that genes
with several paralogs are associated with even higher



Fig. 2 Properties of negatively selected genes in cancer genomes. a Missense mutations in negatively selected genes cause less functional impact
than missense mutations in non-selected or positively selected genes. The mean functional impact (CADD) score distribution for 10,000 random gene
sets of non-selected genes is shown as a reference. The left red line indicates the mean functional impact score for a dN/dS threshold of 0.5 (negative
selection) and the right red line the mean functional impact score for the positively selected genes. b Mean functional impact scores are shown for
sets of negatively selected genes under different dN/dS thresholds and different methods to calculate negatively selected genes. Furthermore,
on single gene level dN/dS ratios and mean functional impact scores are positively correlated (P < 10− 4; Pearson r = 0.61) when considering
genes under significant selection. c Genes with several paralogs tend to have a higher dN/dS ratio compared to genes with one paralog,
which in turn have higher dN/dS values than genes with no paralogs. Genes with one paralog show lower dN/dS values if the paralog has an
anti-correlated expression (* P < 0.05; *** P < 0.001)
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dN/dS values (P < 10–4; Mann–Whitney U test). We
further hypothesized that paralog pairs having correlated
expression across tissues or lower degree of
subfunctionalization are more likely to compensate for each
other compared to paralog pairs having anti-correlated
expression patterns [38]. We found that the dN/dS ratio
was significantly higher for negatively selected genes
having a co-expressed paralog than for those having a
paralog with anti-correlated expression (P < 0.05;
Mann–Whitney U test). Additionally, the dN/dS ratio
was lower for genes having one paralog with high
subfunctionalization (P > 0.01; Mann–Whitney U test);
which we quantified by the similarity in their domain
composition. In summary, we demonstrate that nega-
tively selected genes are protected from mutations
having high functional impact and that the strength
of the negative selection is dependent on the presence
of paralogs.
Additionally, we tested if genes under negative selection

are phylogenetically more conserved than neutrally selected
genes. Indeed, we observed a slightly elevated conservation
of negatively selected genes compared to randomly sampled
neutrally selected gene sets (P = 0.047; permutation test).
Positively selected genes showed a higher evolutionary con-
servation (Additional file 3: Figure S8).
It has been proposed that the low number of nega-

tively selected genes found in cancer is due to a relax-
ation on purifying selection because of extra copies of
the same gene [25]. To test how ploidy affects our
results, we repeated our analysis only considering muta-
tions falling into diploid regions of the genome. We
found that the correlation between dN/dS values in
diploid-only versus all regions was 0.95 (P value < 4.
1e-7) and 0.83 (P value < 7.7e-7) for positively and
negatively selected genes (Additional file 3: Figure S9),
respectively. However, two genes, TECTA and GTSF1L,
were no longer significantly under negative selection when
looking at diploid-only regions. To further validate our list
of negatively selected genes we obtained values of haploin-
sufficiency. We found six of our negatively selected genes
being haploinsufficient, e.g. with a pLI score (probability
of being loss of function intolerant) > 0.8, including TERT.
Moreover, TERT has been shown experimentally to be
haploinsufficient in mice [39].
TERT is the gene showing the second most significant

signal of negative selection (Table 1, Q < 0.001) and it
has been described as an oncogene in cancer progression
[40]. TERT, a telomerase reverse transcriptase that main-
tains telomere ends, is currently the only gene known to
be upregulated in several tumor types by a mutation in its
promoter [41]. This example demonstrates that functions
related to the maintenance of viability during malignant
transformation are under negative selection, and that
negative selection at the level of protein function can coin-
cide with positive selection of regulatory mutations that
increase the protein’s abundance. Our results provide evi-
dence of negative selection acting on the coding sequence
of TERT, ultimately reaffirming its essential role in cancer.
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The functional role of genes under negative selection and
their impact on survival
To investigate other cellular processes and functions as-
sociated with proteins under negative selection in cancer,
we performed a gene set enrichment analysis (GSEA)
[42, 43]. Our analysis revealed eight Gene Ontology
(GO) terms and five Reactome pathways [44] sig-
nificantly enriched among negatively selected genes (see
Additional file 1: Table S5 for the full list and Fig. 3 for a
representative selection). Most enriched terms were re-
lated to protein synthesis (e.g. “eukaryotic translation
elongation” and “protein maturation by protein folding;”
Q < 0.05) or molecule transport (e.g. “transport of glu-
cose and other sugars, bile salts and organic acids, metal
ions and amine compounds;” Q < 0.05).
The high number of ribosomal proteins associated with

low dN/dS values reflects the general importance of pro-
tein synthesis for all living cells and, in particular, for the
higher protein synthesis rates of fast growing and dividing
cancer cells. In fact, overexpression of translation-
promoting proteins has been observed in many cancer
types and has been linked to rapid proliferation and malig-
nant transformation [45].
Three Reactome pathways related to molecular trans-

port were enriched among the negatively selected genes
(Fig. 3, “Disorders of transmembrane transporters,”
“Transport of glucose and other sugars, bile salts and
organic acids, metal ions and amine compounds,”
“Transport of inorganic cations/anions and amino acids/
oligopeptides;” all Q < 0.1). Of these pathways, the 12
members that were under the strongest negative selec-
tion (dN/dS < 0.5) were specifically enriched in glucose
transport and metabolism (“facilitative Na+-independent
glucose transporters” and “glucose metabolism;” both Q
< 0.05). Specifically, five of the 12 genes, GCK, SLC2A1
Fig. 3 Functional enrichment of negatively selected genes and their impac
selected genes (* Q < 0.1). Most of these functions are related to protein tr
(also known as GLUT1), SLC2A8 (also known as
GLUT8), CALM3, and FGF21, were involved in at least
one of these two pathways. Interestingly, changes in
glucose uptake and higher rates of glycolysis (i.e. the
Warburg effect) are among the hallmarks of metabolic
changes in cancer [46, 47]. Accordingly, several of the
aforementioned glucose-related enzymes have been im-
plicated in metabolic reprogramming. For example, the
SLC2A1 glucose transporter is known to be a key medi-
ator of the Warburg effect [48]. Knockdown of SLC2A1
has been shown to reverse the Warburg effect [49], de-
crease proliferation, and induce apoptosis in cancer cell
lines and mouse xenografts [48, 50, 51]. Moreover, other
studies have shown that a high SLC2A1 expression level
is a marker of poor prognosis for several types of cancer
[52, 53]. Interestingly, FGF21 stimulates glucose uptake
by upregulating SLC2A1 [54].
Additionally, out of all the transport-related genes

subjected to strong negative selection, the lactate
transporter SLC16A3 has the lowest dN/dS ratio (dN/
dS = 0.34). This gene is essential for metabolic repro-
gramming in cancer; in clear renal carcinoma cell
lines, its silencing has been shown to cause a partial
reversion of the Warburg effect through inhibiting
the secretion of glycolysis-generated lactate [55]. Ac-
cordingly, both the expression of SLC16A3 and its
DNA methylation levels are predictive of patient sur-
vival [56].
Next, we investigated which protein complexes were

under negative selection (CORUM database [57]). We
applied the same GSEA strategy as above and identified
three complexes enriched for negatively selected genes
(Additional file 1: Table S5). In agreement with the pre-
viously described enrichment of translation-related func-
tions, two of the complexes were linked to the ribosome
t on survival. Several functions are enriched among negatively
anslation and molecular transport
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(“Ribosome, cytoplasmic” and “60S ribosomal subunit,
cytoplasmic”).
We found the P2X7 signaling complex to be one of the

complexes under strongest negative selection (P = 0.029;
not significant after multiple testing correction). Members
of the P2X7 complex are implicated in the control of
proliferation and cell survival [58, 59] and previous
studies have demonstrated its importance in cancer
progression [60–62]. Interestingly, the P2X7 receptor
modulates glycolysis by regulating the SLC2A1 glucose
transporter [59], which, as discussed above, is also under
strong negative selection. We tested if the presence of
mutations in either the P2X7 complex or the SLC2A1
gene was associated with improved prognosis. We con-
sidered 15 tumor types for which more than five patients
carried a mutation in one of the P2X7 proteins or the
SLC2A1 gene. By definition of negative selection (absence
of missense mutations), groups of mutation carriers were
typically too small to allow for sufficient statistical power
using Kaplan–Meier statistics. Accordingly, no cancer
type mutation carriers showed significantly different sur-
vival from non-mutation carriers after multiple testing
correction. Instead we computed the Cox hazard ratios
for each cancer type. In a comparison between mutated
and wild-type P2X7 complex groups, we found that
the mutated group was associated significantly more
often (P = 0.035; Binomial test; Additional file 3: Figure
S10) with improved prognosis (cox coefficient < − 0.1; 12
cancer types) than with poor prognosis (cox coeffi-
cient > 0.1; three cancer types).
Next, we tested whether besides mutation status the

expression level of negatively selected genes could be es-
sential for the tumor and thereby influence the survival
of affected patients. By considering gene expression we
were able to overcome the problem of the small muta-
tion carrier groups. We tested for each negatively se-
lected gene whether low expression was associated with
improved patient survival. We identified ten genes with
a dN/dS ratio < 0.5 whose expression showed a signifi-
cant association to survival in at least one tumor type
(Q < 0.1; Kaplan–Meier statistics). For nine of these
genes (Additional file 3: Figure S11), improved survival
was associated with low expression of the gene, a
fraction that is higher than expected by chance alone
(P = 0.025; Binomial test).

In vitro versus in vivo gene essentiality
We verified whether our negatively selected genes had
been identified as essential in recent mutagenesis screens
of cancer cell lines [35, 63]. Surprisingly, we did not find
a significant overlap—only 16% of the genes with a
dN/dS ratio < 0.5 were found to be essential in at least
one of the two experimental screens. However, with re-
spect to functional pathways we observed a much better
agreement with the mutagenesis screens [35, 63]
(Additional file 1: Table S5). For instance, both screens
identified RNA processing and translation to be the most
strongly enriched function among cancer-essential genes;
likewise, we found that fundamental biological processes
required for proliferation (e.g. “Translation”) were enriched
among the overlapping gene set (i.e. those genes that were
identified as cancer-essential and under negative selection;
Q < 10– 10). In contrast, for the set of genes that are
under negative selection but not cancer-essential, the
strongest enrichment is for processes that depend on
cell-environment interactions (e.g. pathways related to
membrane transport and “Cell-Cell communication;”
all Q < 0.1). As such, the glucose metabolism-related
genes discussed above are only found in this latter set,
possibly reflecting the artificial nature of the in vitro envir-
onment used for essentiality experiments.

Immune-mediated negative selection of neoantigens
The human immune system is capable of discriminating
foreign cells [64] by recognizing the immunopeptidome.
This immune response in cancer is (at least partly) me-
diated by neoantigens or neoepitopes—mutated epitope
sequences that, once exposed on the surface of tumor
cells by the major histocompatibility complex (MHC),
trigger a T-cell immune response (Fig. 4a). We hypothe-
sized that known native epitope sequences would be
protected from nonsynonymous mutations. To test this
hypothesis, we assembled a consensus list of 13,422 hu-
man epitopes by intersecting a large, diverse experimen-
tal resource (IEDB) with computational MHC-binding
predictions (NetMHC; see “Methods”). We tested if
these epitopes were under stronger negative selection
compared to the non-exposed regions of the same pro-
teins. Indeed, a significantly lower dN/dS value is associ-
ated with the epitope regions across 26 tumor types
irrespective of the HLA type of the patient (P < 0.0001;
permutation test; see “Methods” section; Fig. 4b). As pa-
tients differ in their HLA type, we tested the intuition
that epitopes bound to more frequent HLA alleles would
show stronger negative selection in the cohort as com-
pared to epitopes binding to HLA alleles rarely found in
the population. Indeed, the dN/dS of the frequent HLA-
A0201-bound immunopeptidome (~ 30% of Caucasian
population) was lower than for any of the ten rarest
HLA alleles (< 1% of Caucasian population). HLA-B5802
was the only of the rare HLA alleles, for which the
binders showed a signal of significant negative selection
(see “Methods” for the full list of tested HLA alleles).
Next, to strengthen our conclusions we tested the pres-
ence of immune mediated negative selection in 2201 pa-
tients carrying the allele HLA-A0201 and compared to
patients that do not carry this allele (non-HLA-A0201).
The SSB-dN/dS value for the binding epitopes of HLA-



Fig. 4 Negative selection of epitopes across multiple tumor types. a We assembled lists of epitopes binding to MHC I or MHC II complexes (see
“Methods”). Cells carrying mutations on native regions commonly exposed to the immune system are recognized and eliminated by immune
cells. We hypothesize that the action of the immune system will leave a signature of negative selection in the cancer genome. Such evidence
suggests that tumor cells may escape immune surveillance by acquiring mutations in native non-epitope regions and that native epitope regions
become depleted of any high functional impact mutation. b The dN/dS ratio for both MHC I- and MHC II-binding epitopes was significantly
lower than for a randomized set of non-epitope regions. The P value was computed by shuffling the coordinates of equally sized peptides
within the same protein. The calculation holds when analyzing specifically patients carrying the HLA-A0201 allele vs patients not carrying this
allele. c The same calculation was performed separately on MHC I and MHC II epitopes for each tumor type. Bold indicates significant when
epitope-binding regions from both MHC complexes were combined. See Additional file 1: Table S1 for cancer type abbreviations. d Figure
showing a negative correlation between the dN/dS ratio and the level of immune activity as measured by the quantity of local CD-8 T cells
(R is the Pearson correlation coefficient). This suggests that the immune system employs a fundamental tissue-specific mechanism that drives
negative selection in tumor evolution
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A0201 patients was 0.87 (95% confidence interval [CI] =
0.78–0.97) compared to 0.94 (95% CI = 0.86–1.03) for the
binding epitopes of non-HLA-A0201 patients. Add-
itionally, to confirm our observations with an inde-
pendent and tumor type-specific experimental dataset,
we retrieved the HLA-bound peptidome of melanoma
cells [65] and repeated the permutation test using
melanoma-specific SSB-dN/dS computations. Similarly,
we found that these epitopes were also under
significant negative selection when compared to ran-
dom expectation (P = 0.005).
We next examined the strength of selection behind

MHC I- and MHC II-specific epitopes in individual
tumor types (Additional file 1: Table S6). In skin melan-
oma and esophageal carcinoma, both MHC I- and II-
exposed epitopes showed significant negative selection
(Fig. 4c). However, while cervical, lung, and bladder can-
cer only showed a significant negative selection of MHC
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I-specific epitopes (P = 0.024, 0.028, and 0.024, respect-
ively), testicular, and head and neck tumors only showed
a significant negative selection of MHC II-specific epi-
topes (P = 0.012 and 0.01, respectively).
As mutation burden (including antigenic mutations)

is linked with cytolytic activity of tissue-specific im-
mune infiltrates [66] and different tumor types have a
different average mutation burden, we investigated the
relationship between tumor type-specific immune ac-
tivity and the degree of negative selection against
neoantigen presentation (Fig. 4d). Five out of 14 fea-
tures measuring cytolytic activity showed a significant
negative correlation with dN/dS ratios over tissues
(Fig. 4d, Additional file 1: Table S6B and C,
Additional file 3: Figure S12). These results provide
evidence that the immune system acts as an import-
ant force behind negative selection in tumor evolu-
tion, and reveals differences in the way tumors escape
the immune response. We found lower grade gli-
oma—a brain tumor that grows in an immune privi-
leged microenvironment where the exposition of
antigens does not trigger an immune response—to be
among the tumors with the lowest degree of negative
selection against neoantigen mutations. On the other
hand, cervical tumors showed a strong negative selec-
tion of epitopes, which might reflect increased im-
mune response due to papilloma infection preceding
carcinogenesis [67].
Interestingly, we identified HLA-DOA, a member of

the epitope presentation machinery, as one of the
most strongly negatively selected genes (dN/dS = 0.29,
Q = 0.058). HLA-DOA is the α-subunit of the HLA-DO
heterodimer that negatively regulates HLA-DM—the
protein responsible for loading peptides on the MHC class
II complex [68, 69]. It has been shown that HLA-DO
expression and activity diminishes the presentation of
self-antigens [70]. Thus, maintaining a functional HLA-
DOA protein might form part of the immune escape
strategy of cancer cells. The strong negative selection of
an MHC class II modulator is compelling given recent
evidence highlighting the importance of (MHC class
II-binding) CD4(+) T cells in recognizing immunogenic
mutations in cancer genomes [71]. Another two genes
under significant negative selection are involved in
antigen presentation by the MHC complex. AP1B1 (dN/
dS = 0.41, Q = 0.039) and AP2S1 (dN/dS = 0.04, Q = 0.01)
are members of the clathrin-associated adaptor protein
complex 1 (AP-1) and 2 (AP-2), respectively, which are
involved in antigen loading onto the MHC class II
complex [72, 73]. Interestingly, AP-1 is essential for
MHC complex I downregulation and immune escape
upon HIV infection [74, 75].
In summary, the presented evidence supports a major

role of negative selection in cancer evolution, which has
been neglected in most studies, and ultimately chal-
lenges the current paradigm of an exclusive role of posi-
tive selection in cancer.

Discussion
With the advent of large-scale tumor sequencing studies,
cancer research has focused on the identification of
somatic alterations driving tumor malignancy. The cen-
tral questions behind this line of research have aimed at
determining which mutations confer a selective advan-
tage to the cell, which mutations recurrently appear in a
particular tumor type, and which mutations have a
strong effect on cancer phenotype itself. In contrast,
only few recent studies [17, 18, 20–24, 31] have explored
whether genes are subjected to negative selection during
carcinogenesis. Among the possible effectors of negative
selection is the immune system [3], which eliminates
cancer cells if they carry somatic mutations that create a
neo-antigen or a neo-epitope. Accordingly, a recent
study has predicted the likelihood of oncogenic muta-
tions based on the patient-specific MHC-I genotype
[76]. Here we demonstrated that immune mediated
negative selection acts on native epitope regions using a
classic measure of comparative genomics, dN/dS. These
studies help to shed light upon the mechanisms under-
lying immune evasion and provide insights for improv-
ing cancer immunotherapies in the future.
We present evidence for extensive negative selection

over somatic point mutations in cancer exomes. We
exploited a large cancer exome dataset based on 26
tumor types and uncovered a set of 25 genes under
negative selection (cancer-essential) and a set of 14
genes under positive selection (cancer drivers). Our re-
sults suggest that these numbers are only lower bound-
aries and we would require around 3 million mutations,
which is equivalent to three times as many samples as
used in this study, to reach a 75% recall. However, selec-
tion acts at different levels [6] and thus negative selec-
tion can be tumor type-specific or even patient-specific.
It will then take a much larger sequencing effort to
reveal cancer genes under tissue-specific or patient-
specific negative selection (especially for cancer types
with low mutation rates). Here, we make the assumption
that different tumor types (as well as subgroups of the
same type with different mutation rates) are under com-
mon constraints.
Our results challenge the current understanding of

cancer evolution—that attributes a dominant role to
positive selection [77, 78] or neutral drift [79]. Specific-
ally, we have compared our results to a recently pub-
lished method demonstrating that the number of
negatively selected genes identified depends on the
method used. Despite the fact that both methods are
based on the dN/dS measure, the method used here and
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the recently published method by Martincorena et al.
[18] have arrived to opposite interpretations of the re-
sults. A reason for this difference may lie in the under-
lying approach to estimate dN/dS. Approximate versus
maximum likelihood approaches can over- or underesti-
mate dN/dS depending on gene length and sequence di-
vergence [28]. Somatic evolution may represent a special
case where sequence divergence is low and/or the num-
ber of codons under selection is small. Intriguingly, we
find that dNdScv overestimate the median dN/dS in our
simulated neutral dataset but apparently not in the neu-
tral dataset simulated in their study. Such discrepancy
could be due to the implementation of the simulation:
we simulate the SNVs based on context frequency and
gene composition, whereas Martincorena et al. simulate
the counts per gene based on a binomial model. Despite
the differences in the interpretation of the results, we
believe that all three methods (dNdScv, cBaSE, and SSB-
dN/dS) provide complementary strategies for identifica-
tion of genes under selection in cancer.
The global dN/dS value in cancer genomes is higher

than that from germline variation in a human population
suggesting a relaxation of negative selection in somatic
tissues [80] (Additional file 3: Figure S13). Among the
factors contributing to weaker negative selection could
be copy number gains in cancer genomes creating re-
dundancy and therefore allowing for the accumulation
of mutations [18, 36]. However, when we repeated our
analysis in diploid regions only, we could largely repro-
duce our results suggesting that even though the dN/dS
is shifted towards one (neutrality) in cancer genomes it
does not imply the absence of negative selection. This is
supported by the observation of a depletion of high
functional impact mutations in a substantial fraction of
the genome (most strongly for genes with a dN/dS < 0.5).
Thus, we propose that in addition to dN/dS, functional
impact of point mutations could be used as a comple-
ment for the detection of cancer-essential genes, a strat-
egy that has been applied before for the detection of
cancer driver genes [6, 7].
Among the genes under negative selection, we ob-

serve a strong enrichment of genes related to trans-
lation and molecular transport. This result reflects
the high demand of cancer cells for nutrient uptake
and protein synthesis due to their increased prol-
iferation. Specifically, we find several glucose trans-
porters and regulators of glycolysis to be under
negative selection. Previous studies [48, 50, 51, 53]
showed that mutations in this class of genes affect
cancer cell viability and therefore disease prognosis.
We find both expression and mutation status of
negatively selected genes to be related with patient
survival, suggesting that these genes could be prom-
ising therapeutic targets.
A functional enrichment towards protein synthesis
agrees with a previous experimental study that detected
cancer-essential genes via quantifying proliferation upon
gene knockdown in cancer cell lines [35, 63]. When
examining the genes under negative selection but not es-
sential in cancer cell lines, we find many genes involved
in processes modulating or depending on the interaction
between the cancer cell and its natural environment. As
cancer cell lines are strongly adapted to their medium,
our patient data-based approach could reveal genes and
functions which cannot be experimentally determined as
cancer-essential in vitro. This is in line with a recent
study demonstrating that in vivo conditions are neces-
sary for detecting environment-specific cancer depend-
encies in RNAi screens [19].
During the last decade immunotherapy has become an

important component of cancer treatment. This type of
treatment enhances and promotes the patient’s own im-
mune system to specifically eliminate cancer cells. One
established mechanism of the immune response is to
recognize antigens that are not present in the normal
cells and to eliminate such neoantigen-carrying cells
[64]. Cancer cells can acquire somatic mutations within
the boundaries of epitopes—the peptides presented to
the immune system as antigens—and can therefore be
eliminated from the system. Accordingly, the success of
immunotherapy is correlated with mutation load [81].
We demonstrate that negative selection acts stronger on
native epitope regions than on non-epitope regions,
implying that clinically detectable tumors must have es-
caped surveillance by acquiring copy number alterations
or point mutations in non-epitope regions. Although
our study provides a proof of concept for the action of
immune-mediated negative selection, the existence of
suppressed generation of neo-epitopes or the selective
effect of reduced epitope binding through mutations re-
mains to be tested. An interesting finding is that MHC-I
and MHC-II epitopes are being under different selective
pressures in different tumor types. For example, there is
an apparent relationship between virus-mediated cancers
such as liver or head and neck tumors and negative se-
lection acting on MHC-II specific epitopes. Besides
avoidance of mutations in epitope regions, tumors could
also rely on suppression of the antigen presentation
process itself. Indeed, we show that HLA-DOA, a gene
that negatively regulates this process, is under strong
negative selection.
Several of the genes identified here have previously

been implicated in patient survival. Hypothesizing that
mutations in cancer-essential genes lead to improved
survival, it would thus be interesting to determine
whether the presence of mutations in purified genes is
correlated with an increase or a decrease in survival.
However, genes under negative selection have few
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substitutions, most of which do not have a strong impact
on the function of the protein. The lack of substitutions
restricts statistical power when it comes to applying a
conventional Kaplan–Meier analysis. However, consider-
ing the rapid increase in sequenced cancer exomes and
genomes, we expect that in the near future enough data
for genes under negative selection will be available to
perform this type of analysis.
In summary, we have identified a conservative estimate

of 23 genes under significant negative selection. To-
gether with previous literature, our analyses suggest that
some of these genes could be potential targets for cancer
treatment. One of these, TERT, is the only gene identi-
fied as a cancer driver because of a recurrently non-
coding mutation in its promoter region. We hypothesize
that the enhanced expression of TERT as a positive
selected event imposes a restriction on the coding se-
quence, ultimately being reflected as a negative selection
signal. Potentially positive and negative selection could
also act on different protein-coding regions of the same
gene (for example positive selection for an activating
mutation and negative selection on the remaining re-
gions of the protein to preserve its function). In this
case, negative selection would be cancelled out by the
effect of positive selection on gene-level and would not
be detected by our method.
Our simulation indicates that the increasing availabil-

ity of sequencing data from individual tumor types will
help us to reveal tissue-specific or even patient-specific
traces of negative selection. This, in turn, will improve
our understanding of cancer-essential functions in differ-
ent tissues and enable us to develop strategies capable of
targeting cancer type-specific essential genes or activat-
ing the immune system through optimized modification
of epitopes.

Conclusions
In our work, we demonstrate that despite the extensive
amount of neutrally evolving genes in a pan-cancer frame-
work (1) essential cellular functions are under negative
selection and (2) there is extensive immune mediated
negative selection in specific tumor types.

Methods
Tumor data
The TCGA tumor dataset for 25 cancer types was down-
loaded from the following link: https://www.dropbox.
com/sh/fsaxnc3p5jko1ma/AAAlfj4P1aJ0rI7sPAshf4bOa/
mafs/tcga_pancancer_dcc_mafs_082115.tar.gz [13]. This
consisted of publicly available TCGA somatic mutations
files retrieved from Broad GDAC Firehose (date stamp
20,150,824) as described in Kandoth et al. [13]. CLL was
obtained from ICGC [82]. Details on how the MAF files
were assembled are in the readme document within the
compressed file available in synapse. The CLL dataset
was obtained from the ICGC-CLL consortium. The 26
tumor types including CLL (“Pancan26”) are described in
Additional file 1: Table S1. Population variant allele fre-
quency (VAF), functional impact, and repeat information
were obtained from the European Variant Server (EVS),
the CADD database [33], and the UCSC genome browser
tracks, respectively. Somatic mutations were excluded
based on the following criteria: (1) VAF < 0.1; (2) number
of reads supporting the alternative allele < 5; (3) EVS
frequency ≥1 % ; (4) segmental duplication score > 0.5; (5)
UCSC genome browser simple repeat region overlapping
the mutation; and (6) allele balance bias (ABB) score≤ 0.7
(Manuscript for ABB score in preparation; see “Methods”).
Comparing somatic variants with germline variants having
AF > 0.001 in the ExAC database revealed an overlap
of < 1%. The only candidate negatively selected gene
harboring one potential synonymous germline variant is
labelled in the list of selected genes (Table 1). In addition,
we removed any gene known to be a false positive in
exome studies [13], any gene considered not to be
expressed (mean and median RPKM < 1 in 11 or more of
the 12 tumor types from Synapse:syn2812925 expression
data), and any gene having a ratio for the total number of
non-synonymous sites (Na) to synonymous sites (Ns)
larger than five. Furthermore, we discarded genes which
had zero synonymous and zero non-synonymous substitu-
tions. Using OncodriveCLUST [7], we also labelled genes
harboring clusters of potentially functional synonymous
SNVs (Q < 0.2). Filtered gene files used for the analysis
were uploaded to synapse (syn6115413).
dN and dS calculations
All somatic point mutations were annotated using Vari-
ant Effect Predictor [83], which provides an Ensembl
transcript ID and the respective variant type of the mu-
tation. Missense and nonsense mutations were consid-
ered non-synonymous substitutions. Mutations having a
different variant type were discarded. In addition, each
mutation was assigned to one substitution type (A > T,
A > C, A > G, C > A, C > T, C > G, or CpG >N). We then
counted all possible substitutions for each transcript
present in the MAF file. Finally, we obtained the total
number of non-synonymous and synonymous sites for
each of the seven substitution types using an approxi-
mate method [28]. The ratio of non-synonymous substi-
tutions per non-synonymous sites (dN) was calculated by
dividing the observed number of non-synonymous
substitutions by the total number of non-synonymous
sites per transcript. Similarly, we obtained the ratio of
synonymous substitutions per synonymous sites (dS) and
used these values to calculate the uncorrected dN/dS
ratio per transcript.

https://www.dropbox.com/sh/fsaxnc3p5jko1ma/AAAlfj4P1aJ0rI7sPAshf4bOa/mafs/tcga_pancancer_dcc_mafs_082115.tar.gz
https://www.dropbox.com/sh/fsaxnc3p5jko1ma/AAAlfj4P1aJ0rI7sPAshf4bOa/mafs/tcga_pancancer_dcc_mafs_082115.tar.gz
https://www.dropbox.com/sh/fsaxnc3p5jko1ma/AAAlfj4P1aJ0rI7sPAshf4bOa/mafs/tcga_pancancer_dcc_mafs_082115.tar.gz
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Somatic substitution bias (SSB) correction
As different substitution types have different probabil-
ities, we developed a method to correct the number of
sites based on the observed frequency of each substitu-
tion: A > T, A > C, A > G, C > A, C > T, C > G, and CpG >
N (termed somatic substitution bias correction, SSB7)
(for details, see Additional file 4). In molecular evolu-
tion, selecting a substitution model is key to achieve a
correct interpretation of the results. Cancer genomes ac-
cumulate mutations more often in CpG sites compared
to non-CpG sites [29]. Accordingly, we adjust the model
considering six substitutions types by counting changes
occurring on CpG sites separately. The observed fre-
quency for these seven substitution types was obtained for
each gene per cancer cohort. Next, the relative expected
frequency based on the total number of synonymous (Ns)
and non-silent (Na) sites was obtained for all human
genes (including nonsense and non-synonymous sites as
non-silent). Third, we calculated the fold change of the
observed versus expected frequencies for each substitution
type. Then, we used the obtained fold change to adjust Na
and Ns per mutation context per gene. The total per-gene
Na and Ns was calculated as the sum across all seven
categories. To combine different tumor types, we obtained
a pan-cancer Na and Ns based on the fraction of somatic
mutations in each tumor type compared to the total
number of mutations across 26 tumor types. The full
mathematical model is described in Additional file 4. The
comparison with the correction taking into account 192
parameters to address the substitution bias and the com-
parison with the effect of applying different filtering cri-
teria to test the robustness of our set of significantly
selected genes is shown in Additional file 3: Figure S2 and
S4, and in Additional file 1: Table S7, respectively.

Statistical analysis
To assess the significance of selection acting on genes
we adapted a previously published statistical test (for
details, see Additional files) [29]. This test is based on
the principle that synonymous somatic mutations are
passenger mutations. This enables us to estimate the ex-
pected number of non-silent mutations and test against
the null hypothesis of neutrality. We calculated P values
considering the SSB-corrected total number of sites for
every gene. Multiple test correction was performed using
the Benjamini and Hochberg method. Significant genes
were selected based on the adjusted P value (Q < 0.1).
Significantly positive and negative genes were selected
based on the dN/dS measure (> 1 positive, < 1 negative).

Functional impact scores, paralogs, conservation, and
mutation rates of genes under selection
We retrieved the PHRED-scaled CADD scores [33] for
all the mutations used to compute the dN/dS ratios.
Genes associated with a Q-value < 0.1 were considered
to be under selection, while genes associated with a
Q-value > 0.8 were considered to be neutral. We com-
puted the mean functional impact score (among non-
silent mutations in all genes of the respective sets) for
different dN/dS cut-offs for negatively selected genes, for
10,000 randomly sampled neutral gene sets, and for the
positively selected genes (dN/dS > 1). P values were com-
puted as the number of times the randomized mean
functional impact score was more extreme than the
observed mean functional impact score. We retrieved
paralog information for all human genes from Ensembl
via BioMart [84]. We did not apply any filters on se-
quence similarity between paralog pairs. To test the
difference in degree of negative selection between genes
with and without paralogs, we first removed genes with
a dN/dS ≥ 1. However, the observed differences in dN/dS
between genes with and without paralogs are inde-
pendent of the precise dN/dS cutoff used for filtering
(Additional file 3: Figure S14).
To assess the correlation between gene expression and

negative selection, we computed the Pearson correlation
coefficient between each negatively selected gene asso-
ciated with a single paralog and the paralog over 53
healthy tissues from GTEx (V6p) [85].
To test differences in negative selection for paralog

pairs with high versus low degree of subfunctionaliza-
tion, we annotated all paralog pairs with InterPro do-
mains [86]. We excluded domains spanning > 25% of a
protein as many of the larger annotations are in fact
protein family classifications. We then implemented a
similarity measure of the domain composition between
two proteins as the Jaccard index of the domain annota-
tions of paralog A and paralog B. The difference in dN/
dS was significant for all domain composition similarity
score cutoffs < 0.38.
For testing conservation differences between genes

under positive, neutral, and negative selection, we asso-
ciated each gene with a measure of phylogenetic conser-
vation [87]. We applied the same randomization strategy
as described above for detecting differences in the muta-
tion functional impact between the gene groups. We also
computed the mutation rate for each gene ((synonymous
+ non-synonymous mutations) / transcript length). We
did not detect a significant difference between the muta-
tion rates of negatively and positively selected genes;
however, both were significantly lower than those of
neutrally selected genes (Additional file 3: Figure S15).

Comparison to dNdScv from Martincorena et al. [18]
The dNdScv tool from Martincorena et al. was obtained
from github (https://github.com/im3sanger/dndscv). To
compare to our method, the original script was run with
options: refdb = “hg19,” sm = “192r_3w,” kc = “cgc81,” cv

https://github.com/im3sanger/dndscv
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= “hg19,” max_muts_per_gene_per_sample = 3, max_
coding_muts_per_sample = 10,000, use_indel_sites = F,
min_indels = 5, maxcovs = 20, constrain_wnon_wspl = T,
outp = 3. The latter option allows for three different out-
puts, a list of per gene results using dnds_cv, a list of per
gene results using an alternative method dnds_loc, and a
global dN/dS file. In the supplementary figure, both
methods are shown for clarity. The input files from pan-
cancer and the individual tumor types were adapted
from the original MAF file available in synapse. The
pan-cancer file in dNdScv format was deposited on syn-
apse syn11617417. In addition, we run dNdScv on four
simulated neutral sets having 100 K, 300 K, 500 K, and
1 M somatic mutations, also deposited on synapse. For
comparison, a global dN/dS value has been obtained by
using all mutations together in SSB, i.e. by considering
the whole exome as a single gene. This strategy ensures
that the global dN/dS estimate is robust due to being cal-
culated using a large number of non-synonymous and
synonymous mutations and comparable to the global
dN/dS estimate provided by dNdScv. The median dN/dS
was calculated using the dN/dS values of 500 randomly
selected genes after removing genes with 0 non-silent or
0 synonymous mutations. Additional file 3: Figure S5
and S6 show the mean value for the median dN/dS and
the 95% CI after bootstrapping 100 times.

Comparison to CBaSe from Weghorn et al. [17]
The list of positively and negatively selected genes and
their respective P values were obtained from [17]. The
list provided two different P values: one for testing for
negative selection and for testing for positive selection.
We assembled a list of positively and a list of nega-
tively selected genes by selecting genes having a Q-value
< 0.25 in SSB. Then, we observed the distribution of
P values obtained for these genes in [17]. Additionally,
we used the CBaSe web server to identify negatively
selected genes specifically in our pan-cancer call set, using
default parameters and allowing the method to choose the
best model.

Functional enrichment
We applied a variant of the GSEA algorithm [42] as de-
scribed in Schaefer and Serrano [43] to identify enriched
GO terms, pathways, and complexes among genes
undergoing negative selection. For the analysis, we only
considered those GO terms and pathways that were as-
sociated with at least 12 genes. Similarly, we only con-
sidered those complexes composed of five or more
members.
To test the robustness of the observed functional en-

richment, and to exclude that less accurate estimates of
selection from lowly mutated genes impact the per-
formed analysis, we repeated the GSEA on a reduced
gene set containing only those genes with at least ten
mutations (silent or missense). We were largely able to
reproduce the previously observed functional enrich-
ment: in all three of the functional categories discussed
in the manuscript (“protein translation,” “membrane
localization and ion transport,” and “metabolism”), sev-
eral of the previously identified GO or Reactome terms
were enriched (e.g. “translation elongation,” “Transport
of glucose and other sugars, bile salts and organic acids,
metal ions and amine compounds,” and “superoxide
metabolic process;” all P < 0.01).
To identify processes enriched among the overlapping

subset (i.e. cancer-essential genes under negative selec-
tion), we used the ConsensusPathDB tool [88]. We con-
sidered the mutagenesis screens in K562 and in KBM7
[63]. We computed the enrichment of the two subsets
(under negative selection-only and overlap with cancer-
essential genes) with respect to the full set of negatively
selected genes (all genes with dN/dS < 0.5).

Survival analysis
Survival analysis was performed using the R package
“surv.” For assessing whether P2X7 mutation status af-
fects patient survival, a cox regression model was used
to determine the hazard ratio of dying for the group of
affected patients compared to the unaffected patients.
Then, we used a binomial test to determine if mutations
in P2X7 are generally associated with a better prognosis.
We excluded those tumors that had an absolute cox
coefficient < 0.1 and those tumors for which less than
five patients were affected.
To test if expression of genes with low dN/dS affects

survival, we considered the 625 genes with the lowest
dN/dS (dN/dS < 0.5) having at least ten reported muta-
tions and available expression information in TCGA. We
normalized gene expression values by the patient-
specific mean expression over all genes. For each gene
and cancer type (14 cancer types with > 300 patients),
we split the patients into those who displayed higher
than median gene expression and those who displayed
lower than (or equal to) median gene expression. We
then determined if there was a difference in survival
between the two patient groups.
To test if the fraction of genes for which low expres-

sion was associated with improved survival was higher
than expected (among negatively selected genes showing
a significant effect on survival), we determined this frac-
tion among genes under neutral selection. As a much
lower fraction of those showed a significant association
between expression and survival, we had to relax the
Q-value threshold to 0.4 resulting in 470 genes. In 54%
of those, low expression was associated with improved
survival. We therefore set the probability of success
parameter p to 0.54 when performing the binomial test.
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The nine genes for which low expression was associated
with improved survival were GPR87, CACNG2, VSIG10L,
LMX1B, MORN5, UCMA, STRAP, FAM109A, and
C14orf182 (now renamed to LINC01588). For the latter
the evidence for translation is controversial: while UniProt
[89] (accession: B7ZM91) and ProteomicsDB [90] indicate
that it is translated into a protein, the new version of
HGNC [91] lists it as non-coding (as of 28 August 2017).

Analysis of negative selection on tumor peptide antigen
regions
We retrieved epitope positions of human proteins
(66,698 regions) from the IEDB database [92]. We then
ran netMHCIIpan-3.1 [93] and netMHC-4.0 [94]
(default parameters, alleles HLA-A_0201 and HLA-
DRB1_0101) on the total list of peptides retrieved as epi-
topes. Next, as our final set of candidate epitope regions
we extracted 13,422 epitopes labelled by netMHCIIpan-
3.1 or netMHC-4.0 as strong (rank < 0.5) or weak
binders (rank < 2). We deposited both files used in this
study in synapse (id syn11935058). Then, we fused all
candidate epitope regions into one super-epitope and
the remaining non-epitope parts of the same proteins as
one super-non-epitope (proteins with no annotated epi-
tope were not included in the super-non-epitope). Then,
we calculated the total number of possible non-
synonymous and synonymous substitution sites for both
the super -epitope and -non-epitope. The number of
observed synonymous and non-synonymous mutations
across the tumor dataset for both regions was extracted
using bedtools [95]. A SSB7-corrected dN/dS value for
the true epitope region was obtained as described above
for genes. In order to obtain an exact P value, we per-
mutated the true epitope region 1000 times by shifting
the coordinates of each region such that it overlapped
with a non-epitope region of the same protein and recal-
culated the dN/dS value. For this permutation we also
excluded the first two amino acids of each protein. This
resulted in a distribution of dN/dS values for the non-
epitope regions matched to the epitope regions. An
exact P value was obtained directly from the results of
the permutation by comparing the true observation to
the distribution of the randomized model.
In addition to the allele HLAL-A0201 (present in 30%

of the Caucasian population), we also tested for negative
selection acting on peptides binding to rare HLA alleles
present in < 1% of the Caucasian population. To perform
this analysis, we intersected the full list of class I HLA
alleles provided in Shukla et al. [96] to the available list
of alleles in the netMHC software. From this intersected
list, we selected alleles present in < 1% of the population.
In addition, we only considered alleles where the bound
peptides showed an overlap of < 100 peptides with pep-
tides binding to HLA-A0201. This resulted in a list of
ten alleles (HLA-B5802, HLA-A0302, HLA-A3002,
HLA-A3301, HLA-B4501, HLA-B5301, HLA-B5401,
HLA-B5703, HLA-B7301, HLA-B8101) that were rare
and showed no overlap with HLA-A0201 epitopes.
Finally, to further strengthen our conclusions we then
selected only patients carrying the HLA-A0201 allele
and rerun the same permutation analysis described
above but using only peptides predicted to bind the
MHC-I HLA-A0201 allele. We obtained the HLA types
for MHCI regions via TCIA.at [97].
We observed that one of the MHC class II complex

genes was under strong negative selection (HLA-DOA).
Eight HLA-DOA alleles exist with minor variations at
the nucleotide level but no difference at the amino acid
level [98]. We therefore aimed to exclude the possibility
that the dN/dS computation might have been affected by
misaligned reads. As such, we tested if any of the muta-
tions we used for the dN/dS calculation were identical to
inter-allele variation. As this was not the case, we were
able to conclude that the reported mutations are likely
real and not an artefact of misaligned reads.

Cytolytic activity
We obtained a detailed list of measures of cytolytic
activity for TCGA patients from Rooney et al. [67]. This
list includes amounts of B cells, CD4 regulatory T cells,
CD8 T cells, macrophages, neutrophils, NK cells, pDCs,
MHC Class I, co-stimulation APC, co-stimulation T
cells, co-inhibition APC, co-inhibition T cell, type-I IFN
response, type-II IFN response, and a global measure of
cytolytic activity. We estimated the Pearson correlation
between the mean of these measures per tumor type and
the dN/dS values obtained during the analysis of the
MHCI, the MHCII, and both epitopes combined.

Analysis on diploid-only regions
We downloaded the normalized copy number segment
means (level 3 TCGA data) calculated from SNP array
data for those patients used in this study. Next, we identi-
fied the regions of those patients with segment means
between − 0.01 and 0.01 (diploid regions); we removed all
somatic mutations outside of those diploid regions, result-
ing in ~ 700 K somatic mutations. We then calculated
SSB-dN/dS as stated previously and plotted the correlation
between dN/dS values in diploid-only regions and all re-
gions for negatively and positively selected genes.
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